
1

Microprocessors and Microcontrollers lab

 This laboratory course is designed to complement the traditional Electrical Engineering course

offerings in theMicroprocessors and Microcontrollers labcourse. This course include

 1. To familiarize with the assembly level programming.

 2. To gain knowledge in microprocessor architecture, programming and its various applications.

 3. Design circuits for various applications using microcontrollers.

 4. An in-depth knowledge of applying the concepts on real- time applications.

LIST OF EXPERIMENTS

S.No. NAME OF EXPERIMENTS Page No.

1 Induction to 8085 Microprocessor 3-13

2 (a) Addition of 2 - 8 bit numbers

(b) Addition of 2 - 16 bit numbers

(c) Addition of 2 - decimal numbers

(d) Addition of 8 bit number (neglecting the carry)

14-18

19-23

24-26

27-30

3 Subtraction of 2 – 16 bit numbers 31-35

4 (a) Multiplication of 2 - 16 bit numbers

(b) Multiplication of two 8bit numbers (bit rotation)

(c) Multiply two 8-bit numbers by repetitive addition

36-40

41-44

45-48

5 (a) Division of 2 - 16 bit number

(b) Division of 2 – 8 bit numbers

(c) Factorial of 8 bit number

49-54

55-59

60-63

6 (a) Separation of hexadecimal number into two digits

(b) Check the parity of hex numbers

64-67

68-71

7 Speed control of stepper motor 72-75

8 (a) 1‟s complement of an 8 bit number

(b) 2‟s complement of an 8 bit number

76-79

80-83

9 (a) Generation of square wave

(b) Generation of triangular wave

(c) Generation of sawtooth wave

84-86

87-90

91-93

10 Generation of beep sound on a buzzer 94-96

2

11 Display name on the LCD display 97-99

12 (a) Addition of 2 - 8 bit numbers using microcontroller 8051

(b) Subtraction of 2 - 8 bit numbers using microcontroller 8051

(c) Multiplication of 2 - 8 bit numbers using microcontroller 8051

(d) Division of 2 - 8 bit numbers using microcontroller 8051

100-102

103-105

106-108

109-111

3

EXPERIMENT NO.:01

Introduction to the Microprocessor

Contents Page No.

1. Objectives:………………………………………………………………4

2. Expected outcomes of Experiment:……………………………………..4

3. Theory:…………………………………………………………………..4

4. Equipment Required:………………….………………………………..13

5. Results: ………………………………………………………………….13

6. Assignments: ……………………………………………………………13

7. Conclusions: …………………………………………………………….13

4

1. Objective:

To study the microprocessor 8085.

2. Expected Outcomes of Experiment:

To gain knowledge in microprocessor architecture, programming and its various

applications.

 3. Theory:

Architecture of 8085 Microprocessor

a) General purpose register

It is an 8 bit register i.e. B,C,D,E,H,L. The combination of 8 bit register is

known as register pair, which can hold 16 bit data. The HL pair is used to act

as memory pointer is accessible to program.

b) Accumulator

It is an 8-bitregister, which hold one of the data to be processed by ALU and

stored the result of the operation.

c) Program counter (PC)

It is a 16-bitpointer, which maintain the address of a byte entered to line stack.

d) Stack pointer (SP)

It is a 16-bit special purpose register, which is used to hold line memory

address for line next instruction to be executed.

e) Arithmetic and logical unit

It carries out arithmetic and logical operation by 8-bit address it uses the

accumulator content as input the ALU result is stored back into accumulator.

f) Temporary register

It is an 8-bit register associated with ALU hold data, entering an operation,

used by the microprocessor and not accessible to programs.

5

g) Flags

Flag register is a group of fire, individual flip flops line content of line flag

register will change after execution of arithmetic and logic operation. The line

states flags are

i) Carry flag (C)

ii) Parity flag (P)

iii) Zero flag (Z)

iv) Auxiliary carry flag (AC)

v) Sign flag (S)

h) Timing and control unit

Synchronous all microprocessor, operation with the clock and generator and

control signal from it necessary to communicate between controller and

peripherals.

i) Instruction register and decoder

Instruction is fetched from line memory and stored in line instruction register

decoder the stored information.

j) Register Array

These are used to store 8 bit data during execution of some instruction.

PIN Description

Address Bus

1. The pins Ao – A15 denote the address bus.

2. They are used for most significant bit

Address / Data Bus

1. AD0 – AD7 constitutes the address / Data bus

2. These pins are used for least significant bit

6

ALE : (Address Latch Enable)

1. The signal goes high during the first clock cycle and enables the lower

order address bits.

IO / M

1. This distinguishes whether the address is for memory or input.

2. When this pins go high, the address is for an I/O device.

S0 – S1

S0 and S1 are status signal which provides different status and functions.

RD

1. This is an active low signal

2. This signal is used to control READ operation of the microprocessor.

WR

1. WR is also an active low signal

2. Controls the write operation of the microprocessor.

HOLD

1. This indicates if any other device is requesting the use of address and data

bus.

HLDA

1. HLDA is the acknowledgement signal for HOLD

2. It indicates whether the hold signal is received or not.

INTR

 1. INTE is an interrupt request signal .

 2. IT can be enabled or disabled by using software.

INTA

 1. Whenever the microprocessor receives interrupt signal .

 2. It has to be acknowledged.

RST 5.5, 6.5, 7.5

 1. These are nothing but the restart interrupts .

 2. They insert an internal restart junction automatically.

7

TRAP

1. Trap is the only non-maskable interrupt

2. It cannot be enabled (or) disabled using program.

RESET IN

1. This pin resets the program counter to 0 to 1 and results interrupt enable and

HLDA flip flops.

X1, X2

These are the terminals which are connected to external oscillator to produce the

necessary and suitable clock operation.

SID

This pin provides serial input data

SOD

This pin provides serial output data

VCC and VSS

1. VCC is +5V supply pin

2. VSS is ground pin

Specifications

1. Processors

Intel 8085 at E144 MHz clock

2. Memory

Monitor RAM: 0000 – IFFF

EPROM Expansion: 2000 – 3FFF‟s

 0000 – FFF

System RAM: 4000 – 5FFF

Monitor data area 4100 – 5FFF

RAM Expansion 6000 – BFFF

3. Input / Output

Parallel: A8 TTL input timer with 2 number of 32-55 only input timer available in -85

EBI.

Serial: Only one number RS 232-C, Compatible, crucial interface using 8281A

Timer: 3 channel -16 bit programmable units, using 8253 channel „0‟ used for no band

late. Clock generator. Channel „1‟ is used for single stopping used program.

Display: 6 digit – 7 segment LED display with filter 4 digit for adder display and 2 digit

8

for data display.

Key board: 21 keys, soft keyboard including common keys and hexa decimal keys.

RES: Reset keys allow to terminate any present activity and retain to  - 85 its on

initialize state.

INT: Maskable interrupt connect to CPU‟s RST 7.5 interrupt

DEC: Decrement the adder by 1

EXEC: Execute line particular value after selecting address through go command.

NEXT: Increment the address by 1 and then display its content.

Key Functions:

E
i. Hex entry key „0‟

ii. Substituting memory content where “next” key is paused

immediately

0

after 1, take used to st cutting address.

SUB

iii. Register key „E‟

RD i) Hex code entry (1)

1 ii) Register key „D‟

REG

i) Hex code entry „2‟

C

ii) Retricre data from data „memory‟ to data top

2

iii) Register key „C‟

TN

9

B i) Hex code entry „3‟

3 ii) Retricre data from memory to top

TR iii) Register key „B‟

i) Hex key entry „C‟

F

4 ii) Block search from byte

BLOC iii) Register key „F‟

i) Hex key entry „5‟

A

ii) Fill block of RAM memory with desired data

5

iii) Register key „A‟

FILL

i) Hex key entry „6‟

L

ii) TN/Tl used for sending (or) receiving

6

iii) Register key „H‟

SER

H

i) Hex key entry „7‟

7

ii) Register key „H‟

F2

10

I

8

G0

PL

9

SNG

A

PH

F3

C

SH

MOV

D

CMP

B

SL

BC

E

INS

F

DEL

i) Register key „S‟

ii) Register key „I‟

i) Hex key entry „A‟

ii) Function key F3
iii) Register key “ph”

i) Hex key entry “y”

ii) Signal step program (instruction by instruction)

i) Hex key entry “c”

ii) Much a block of memory from a linear block

iii) Register key “SH”

i) Hex key D

ii) Compare 2 memory block

i) Hex key entry „B‟

ii) Check a block from flame

iii) Register key “SPL”

i) Hex key „E‟

ii) Insert by test into memory (RAM)

i) Hex key „F‟

ii) Delete byte from memory RAM

11

System Power Consumption

Micro BSEB2 MICRO SSEB

+5V @ 1Amp +5V@ 800 mA

+12V @ 200 mA

- 12V @ 100 mA

Power Supply

Specification

MICRO SSEM 230V, AC

@ 80 Hz +5V @ 600 mA

Key Function

12

IC‟s Used

8085 - 8 bit p

8253 - programmable internal timer

8255 - programmable peripheral interface

8279 - programmable key boards / display interface

8251 - programmable communication interface

2764 - 8 KV VV EPROM

6264 - 8K STATIC PROM

7414 - Hex inverter

7432 - Quad 21/p OR GATE

7409 - Quad 21/p AND GATE

7400 - NAND Gate

7404 - Dual D-FF

74373 - Octal „D‟ Latch

74139 - Dual 2 to 4 line decoder

74138 - 3 to 8 line decoder

13

In Enter Program into Trainer Kit

1. Press „RESET‟ key

2. Sub (key processor represent address field)

3. Enter the address (16 bit) and digit in hex

4. Press „NEXT‟ key

5. Enter the data

6. Again press “NEXT”

7. Again after taking the program, are use HLT instruction its Hex code

8. Press “NEXT”

How to executive program

1. Press “RESET”

2. Press “GO”

3. Enter the address location in which line program was executed

4. Press “Execute” key

 4. Equipments Required:

8085 microprocessor kit.

 5. Results:

 Thus 8085 microprocessor was studied successfully.

 6. Assignments:

 Expertise the Micro controller programming & its applications.

Expertise the concepts of theory and programming of microprocessors.

 7. Conclusion:

In this experiment, the motive was to introduce students to the microprocessor. At the

end, student should try to learn as much as they can from this experiment and should try

different programming concepts.

14

EXPERIMENT NO.:02(a)

Addition of 8 bit numbers

Contents Page no.

1. Objectives :………………………………………………………………15

2. Expected outcomes of Experiment :……………………………………..15

3. Theory :…………………………………………………………………..15

4. EquipmentRequired :……………….…………………………………...15

5. Procedure : ………………………………………………………………16

6. Coding : …………………………………………………………………17

7. Results : …………………………………………………………………17

8. Assignments : …………………………………………………………...18

9. Conclusions : ……………………………………………………………18

15

1. Objective:

To write an assembly language for adding two 8 bit numbers by using microprocessor kit.

2. Expected Outcomes of Experiment:

Understanding of the addition of two eight-bit numbers in microprocessor.

3. Theory:

8-bit addition is much like decimal addition except that you are only adding 1s and 0s.

When the sum exceeds 1, carry a 1 over to the next-more-significant column.

0 + 0 = 0 carry 0

0 + 1 = 1 carry 0

1 + 0 = 1 carry 0

1 + 1 = 0 carry 1

General form:A0 + B0 = 0 + Cout

 Where Summation symbol ()

Carry-out (Cout)

Truth table for addition of two binary

digits

A0 B0 ∑0 Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

4. Equipments Required:

8085 micro processor kit
(0-5V) DC battery.

16

5. Procedure:

 no

 yes

Algorithm:

Step 1 : Start the microprocessor.
Step 2 : Intialize the carry as „Zero‟.

Step 3 : Load the first 8 bit data into the accumulator.

Step 4 : Copy the contents of accumulator into the register „B‟

Step 5 : Load the second 8 bit data into the accumulator.

Step 6 : Add the 2 - 8 bit datas and check for carry.

Step 7 : Jump on if no carry.

Step 8 : Increment carry if there is.

Step 9 : Store the added request in accumulator.

Step 10 : More the carry value to accumulator.

Step 11 : Store the carry value in accumulator.

Step 12 : Stop the program execution.

Initialize the carry as zero

 Load the 1
st

 8 bit number

 Transfer and Add the contents of A and B

Check for

carry?

stop

Increment carry by one

Store the added value in

accumulator

Store the value of carry in accumulator

START

 Transfer the 1
st

 number to register „B‟

 Load the 2
nd

 8 bit number

Move the contents of carry into

accumulator

17

6. Coding:

7. Results:

Input

Without carry

 Input Address Value

 4300 04

 4301 02

Output

 Output Address Value

 4302 06

 4303 00 (carry)

With carry

 Input Address Value

 4300 FF

 4301 FF

 Output Address Value

 4302 FE

 4303 01 (carry)

Calculation 1111 1111

 1111 1111

Address Label Mnemonics Hex Code Comments

4100 MVI C,00 OE, 00 Initialize the carry as zero

4102 LDA 4300 3A, (00, 43) Load the first 8 bit data

4105 MOV, B,A 47 Copy the value of 8 bit data

 into register B

4106 LDA 4301 3A, (01, 43) Load the second 8 bit data

 into the accumulator

4109 ADD B 80 Add the hoo values

410A JNC D2, 0E, 41 Jump on if no carry

410D INR C OC If carry is there increment it

 by one

410E Loop STA 4302 32 (02, 43) Stone the added value in the

 Accumulator

4111 MOV A,C 79 More the value of carry to
 the Accumulator from

 register C

4112 STA 4303 32 (03, 43) Store the value of carry in
 the accumulator

4115 HLT 76 Stop the program execution

18

8. Assignments:

Add two numbers 05 & 08where 05= [0000 0101] and 08 = [0000 1000].

9. Conclusion:

This experiment introduces concept of theory and programming ofBinary Arithmetic addition.

It helped students in applying such operation in real time scenario on arithmetic.

Student should try the mentioned operations and implement them on binary addition.

19

EXPERIMENT NO.: 02(b)

Addition of two 16 – bit numbers

Contents Page No.

1.Objectives:..20

2.Expected outcome of experiment:..20

3.Theory: ...20

4.Equipments required: ..20

5. Procedure: ...20

6. Coding: ………………………………………………………………………….22

7. Result: .. 22

8. Assignments: ...23

9. Conclusion: ………………………………………………………………………23

20

1. Objective:

To write an assembly language program for adding two 16 bit numbers using 8085 micro

processor kit.

2. Expected Outcome of Experiment:

Knowledge about addition of two 16 bit numbers.

To familiarize with the assembly level programming.

3. Theory:

16-bit addition is the addition of two 16-values. First, we must recognize that the addition of two

16-bit values will result in a value that is, at most, 17 bits long. Why is this so? The largest value

that can fit in 16-bits is 256 * 256 - 1 = 65,535. If we add 65,535 + 65,535, we get the result of

131,070. This value fits in 17 bits. Thus when adding two 16-bit values, we will get a 17-bit

value. Since the 8051 works with 8-bit values, we will use the following statement: "Adding two

16-bit values results in a 24-bit value". Of course, 7 of the highest 8 bits will never be used--but

we will have our entire answer in 3 bytes. Also keep in mind that we will be working with

unsigned integers.

Programming Tip: Another option, instead of using 3 full bytes for the answer, is to use 2 bytes

(16-bits) for the answer, and the carry bit (C), to hold the 17th bit. This is perfectly acceptable,

and probably even preferred. The more advanced programmer will understand and recognize this

option, and be able to make use of it. However, since this is an introduction to 16-bit mathematics

it is our goal that the answer produced by the routines be in a form that is easy for the reader to

utilize, once calculated. It is our belief that this is best achieved by leaving the answer fully

expressed in 3 8-bit values.

4. Equipments Required:

8085 micro processor kit
(0-5V) DC battery.

5. Procedure:

Algorithm:

Step 1 : Start the microprocessor

Step 2 : Get the 1
st

 8 bit in „C‟ register (LSB) and 2
nd

 8 bit in „H‟
 register (MSB) of 16 bit number.

Step 3 : Save the 1
st

 16 bit in „DE‟ register pair

Step 4 : Similarly get the 2
nd

 16 bit number and store it in „HL‟ register
 pair.

Step 5 : Get the lower byte of 1
st

 number into „L‟ register

Step 6 : Add it with lower byte of 2
nd

 number

21

Step 7 : tore the result in „L‟ register
Step 8 : Get the higher byte of 1

st
 number into accumulator

Step 9 : Add it with higher byte of 2
nd

 number and carry of the lower bit
 addition.

Step 10 : Store the result in „H‟ register

Step 11 : Store 16 bit addition value in „HL‟ register pair

Step 12 : Stop program execution

 no

 yes

 C = 00H

Load „HL‟ with 1
st

 Data

 DE + HL = HL

If Cy=0

C = C + 01

Store „HL‟ in memory (SUM)
accumulator

 Store „A‟ in memory (Cy)

 Transfer HL - DE

 Load „HL‟ with 2

nd
 Data

Transfer C - A
accumulator

START

STOP

22

6. Coding:

Address Label Mnemonics Hex Code Comments

4500 MVI C,00 0E C = 00H

4501 00

4502 LHLD 4800 2A HL – 1
st

 No.

4503 00

4504 48

4505 XCHG EB HL – DE

4506 LHLD 4802 2A HL – 2
nd

 No.

4507 02

4508 48

4509 DAD D 19 Double addition DE +

 HL

450A JNC Ahead D2 If Cy = 0, G0 to 450E

 450E

450B 0E

450C 45

450D INR C 0C C = C + 01

450E AHEAD SHLD 4804 22 HL – 4804 (sum)

450F 04

4510 48

4511 MOV C,A 79 Cy – A

4512 STA 4806 32 Cy – 4806

4513 06

4514 48

4515 HLT 76 Stop execution

7. Result:
Input

Without

 Input Address Value

 4800 01 (addend)

 4801 04

 4802 02 (augend)

 4803 03 (augend)

Output

 Output Address Value

 4804 03 (sum)

 4805 07 (sum)

 4806 00 (carry)

Calculation 0000 0100 0000 0001

 0000 0011 0000 0010

 0000 0111 0000 0011

 0 7 0 3

23

8. Assignment:

Write a program to add 0033 and 05FF.

9. Conclusion:

This experiment introduces concept of theory and programming ofBinary

Arithmeticaddition.It helped students in applying such operation in real time scenario on

arithmetic. Student should try the mentioned operations and implement them on binary

addition.

24

EXPERIMENT NO.:02(c)

Addition of Two Decimal Numbers

Contents Page no.

1. Objectives: ...25

2. Expected outcome of experiment: ...25

3. EquipmentRequired:..25

4.Procedure:...25

5. Coding:...26

6.Results:...26

7.Assignments: ...26

8.Conclusions:..26

25

1.Objective:

To write an assembly language program for addition of two decimal numbers using

microprocessor kit.

2. Expected Outcome Of Experiment:

Knowledge of the addition of two decimal numbers.

Design circuits for various applications using Microcontrollers.

3. Equipments Required:

 8085 microprocessor kit.

 (0-5V) DC supply.

4. Procedure:

Algorithm:

Step1 Initialize HL Reg. pair with address where the first number islying.

Step 2 : Store the number in accumulator.

Step 3 : Get the second number.

Step 4 : Add the two numbers and store the result in 200B.

Step 5 : Go back to Monitor .

 Get the 2
nd

 no.

Add two no.

Adjust the decimal

 Store the result

Get the 1
st

no.

 START

 END

26

5. Coding:

6. Results:

Example:

Address Data Comments

2100 05 The no. of hexadecimal no.

2101 10 1
st
 hex no.

2102 02 2
nd

 hex no.

2103 08 3
rd

 hex no.

2104 04 4
th

 hex no.

2105 01 5
th

 hex no.

2106 1F Result

7.Assignments:

 Write an assembly language code for Addition two numbers 25 & 13.

8.Conclusion:

In this experiment, the motive was to provide students with solid foundation on interfacing the

external devices to the processor according to the user requirements to create novel products and

solutions for the real life problems.

Address

Label

Mnemonics

Hex Code

Comments

2000

Data

Two decimal

no. to be added

2001

Data

2002

Result

Result

2003

LXI H, 2000

21,00,20

Point 1

st
 no.

2006

MOV A, M

7E

Load the acc.

2007

INX H

23

Adv Pointer

2008

ADD M

86

ADD 2

nd
 NO

2009

 DAA 27 Convert to
decimal

200A

INX H

23

Adv Pointer

200B

MOV M, A

77

Store Result

200C

RST 5

27

EXPERIMENT NO.:2(d)

Addition of 8 bit number (neglecting the carry)

Contents Page No.

1.Objectives :………………………………………………………………..28

2.Expected outcomes of Experiment :……………………………………....28

3.Equipments Required :……………………………………………………28

4.Procedure : …………………………………………………………….….28

5.Coding : ……………………………………………………………….….29

6.Results : …………………………………………………………………..30

7.Assignments : …………………………………………………………….30

8.Conclusions : ……………………………………………………………..30

28

1. Objective:

Addition of 8 bit number series neglecting the carry generated.

2. Expected Outcomes of Experiment:

Ability to design and conduct experiments, as well as to analyze assembly programming.
An in-depth knowledge of applying the concepts on addition of two 8 bit numbers neglecting carry

generated.

 3. Equipments Required:

8085 microprocessor kit.
 (0-5V) DC battery

 4. Procedure:

Algorithm:

 Step 1 : Load the content from 2100 location, give how many bytes are to be

added.

 Step 2 : Initialize the accumulator as the result will be stored in accumulator.

 Step 3 : Let the memory to point the no. of the bytes to be added into partial

register acc.

Step 4 : Decrement the Counter having no. of bytes.

Step 5 : Check if zero- No. repeat from point 3.

Step 6 : Store the result to 2100 location.

Step 7 : Go back to monitor.

Step 8 : Execute from 2000.

29

 no

 yes

 yes

5. Coding:

Address Label Mnemonics Hex Code Comments

2000 Start LXI H, 2100 21 00 21 Point to first no.

2003 MOV B,M 46 Load count into B
register

2004 XRA A AF Clear A register

2005 Loop INX H 23 Point to 1st
number

2006 ADD M 86 Add memory to
total

2007 DCR B 05 Subtract from
count

2008 JMC LOOP C2 05 20 Test to see if done

Point to 1st number

Load count into register B

Clear a Register

Point to next number

Add memory to total

Subtract from count

Check if

count zero

Store the result

Start

STOP

30

200B STA 2100 32 00 21 Save the result

200E RST 5 EF

6. Results:

Memory AddressData

2100 04

2101 16

2102 02

2103 08

2104 04

7.Assignments:

Pick the example from textbook to find addition of two 8 bit numbers neglect carry generated in

assembly language by the advice of instructor lab.

Write a program to find addition of 23 and 44.

 8. Conclusions:

This experiment introduces concept of theory and programming ofBinary Arithmetic addition. It

helped students in applying such operation in real time scenario on arithmetic. Student should try

the mentioned operations and implement them on binary addition.

31

EXPERIMENT NO.:03

Subtraction of two 16 – bit numbers

Contents Page No.

1. Objectives:………………………………………………………………32

2. Expected outcomes of Experiment:……………………………………..32

3.Theory:…………………………………………………………………..32

4. Equipments Required:…………………………………………………...32

5. Procedure: ………………………………………………………………..32

6. Coding: …………………………………………………………………..33

7. Results: …………………………………………………………………..34

8. Assignments: ……………………………………………………………..35

9. Conclusion: ……………………………………………………………....35

32

1.Objective:

To write an assembly language program for subtracting two 16 bit numbers using 8085

microprocessor kit.

2. Expected outcome of experiment:

Knowledge of subtraction two 16 bit numbers using 8085 microprocessor kit.

3. Theory:

Binary subtraction is a similar process to decimal subtraction. To perform the binary subtraction

of two numbers carry out the subtraction for each pair of corresponding bits, starting from the

l.s.b. to m.s.b., using he following rules;

 0 - 0 = 0.

 1 - 0 = 1.

 0 - 1 = 1 Subtract 1 from next column.

 0 - 1 - 1 = 0 Subtract 1 from next column.

 1 - 1 - 1 = 1 Subtract 1 from next column

4. Equipment Required:

8085 microprocessor kit (0-5V)

DC battery.

5. Procedure:

Algorithm:

Step 1 : Start the microprocessor

Step 2 : Get the 1
st

 16 bit in „HL‟ register pair

Step 3 : Save the 1
st

 16 bit in „DE‟ register pair

Step 4 : Get the 2
nd

 16 bit number in „HL‟ register pair

Step 5 : Get the lower byte of 1
st

 number

Step 6 : Get the subtracted value of 2
nd

 number of lower byte by

 subtracting it with lower byte of 1
st

 number

Step 7 : Store the result in „L‟ register

Step 8 : Get the higher byte of 2
nd

 number

Step 9 : Subtract the higher byte of 1
st

 number from 2
nd

 number with

 Borrow

33

Step 10 : Store the result in „HL‟ register

Step 11 : Stop the program execution

6. Coding:

Address Label Mnemonics Hex Code Comments

4500 MVI C,00 0E C = 00H

4501 00

4502 LHLD 4800 2A L – 1
st

 No.

4503 00

4504 48

4505 XLHG EB HL – DE

4506 LHLD 4802 2A HL – 2
nd

 No.

 C = 00H

Load „HL‟ with 1
st

 Data

 Transfer E – A (LSB)

 Transfer D – A (MSB) accumulator

 Store „A‟ in memory (MSB)

 Transfer HL - DE

 Load „HL‟ with 2

nd
 Data

 A – A – H – Borrow (MSB)
accumulator

STOP

 A = A – L (LSB)

 Store „A‟ in memory (LSB)

 START

34

4507 02

4508 48

4509 MOV A,E 7B LSB of „1‟ to „A‟

450A SUB L 95 A – A – L

450B STA 4804 32 A – memory

450C 04

450D 48

450E MOV A,D 7A MSB of 1 to A

450F SBB H 9C A- A – H

4510 STA 4805 32 A – memory

4511 05

4512 48

4513 HLT 76 Stop execution

7. Result:

Input

Without borrow

 Input Address Value

 4800 07

 4801 08

 4802 05

 4803 06

Output

 Output Address Value

 4804 02

 4805 02

 4807 00

With borrow

 Input Address Value

 4800 05

 4801 06

 4802 07

 4803 08

 Output Address Value

 4804 02

 4805 02

35

Calculation

05 06 - 07 08

05 06 0101 0110 07 08 0111 1000

CMA 1010 1001 CMA 1000 0111

ADI 0000 0001 ACI 0000 0001

 --------------- --------------

 1010 1010 1000 1000

05 06 + 07 08

 1010 1010

 1000 1000

 (1) 0010 0010

 02 02

8.Assignment:

1. Perform and write down assembly language code forsubtraction of any two 16 bit numbers by

the advice of lab instructor.

2.Write assembly language code forsubtraction of any two 16 bit numbers with help of book.

9. Conclusion:

This experiment introduces concept of theory and programming ofBinary Arithmetic subtraction.

It helped students in applying such operation in real time scenario on arithmetic.

Student should try the mentioned operations and implement them on coding.

 4806 01

36

EXPERIMENT NO.:04(a)

16 – Bit multiplication

Contents Page No.

1. Objectives:………………………………………………………………37

2.Expected outcomes of Experiment:……………………………………..37

3. Theory:…………………………………………………………………..37

4.Equipment Required:….………………………………………………...37

5. Procedure:……………………………………………………………..…37

6. Coding: …………………………………………………………………..39

7. Results: …………………………………………………………………..39

8. Assignments: …………………………………………………………….40

9. Conclusion: ……………………………………………………………...40

37

1. Objective:

To write an assembly language program for 16 bit multiplication by using 8085

microprocessor kit.

2. Expected outcome of experiment:

Knowledge of 16 bit multiplication.

An in-depth knowledge of applying the concepts on real- time applications.

3. Theory:

16-bit multiplication is the multiplication of two 16-bit value from another. Such a

multiplication results in a 32-bit value.

Programming Tip: In fact, any multiplication results in an answer which is the sum

of the bits in the two multiplicands. For example, multiplying an 8-bit value by a 16-

bit value results in a 24-bit value (8 + 16). A 16-bit value multiplied by another 16-bit

value results in a 32-bit value (16 + 16), etc.

For the sake of example, let's multiply 25,136 by 17,198. The answer is 432,288,928.

As with both addition and subtraction, let's first convert the expression into

hexadecimal: 6230h x 432Eh.

4. Equipments Required:

 8085 microprocessorkit

(0-5V) DC battery

5. Procedure:

Algorithm:

Step 1 : Start the microprocessor

Step 2 : Load the 1
st

 data in „HL‟ register pair

Step 3 : Move content of „HL‟ pair to stack pointer

Step 4 : Load the 2
nd

 data in „HL‟ and move it to „DE‟

Step 5 : Make „HL‟ pair as „00‟ and „00‟

Step 6 : Add „HL‟ pair and „SP‟

Step 7 : Check for carry condition, if carry is present increment it by

 one else move to next step.

Step 8 : Decrement DE register

Step 9 : Then move E to „A‟ and perform „OR‟ operation with „a‟ and

 „D‟

Step 10 : The value of operation is zero, then store the value else go to

 step 3

Step 11 : Stop the program

38

 yes no

 yes

 Load the lenth of series

 Move the value „HL‟ to „SP‟

 Increment BC pair

If carry=0

 Decrement DE pair

Move „E‟ to „a‟ & “or” operation with „D‟

Store the result in „HL‟

 Initialize both „BC‟ & „HL‟ as „0000‟

 Add the content of „HL‟ & „SP‟

START

End

Result>1?

39

6. Coding:

Memory Hex Code Label Mnemonics Comments

Location Op code Operand

4100 2A,00,42 LHLD 4200 Get the 1
st

 data in HL

4103 F9 SP HL Save it in stack
 pointer4106

4106 2A,02,42 LHLD 4202 Get the 2
nd

 data in HL

4107 EB XCHG Exchange „HL‟ and
 „DC‟

4108 21,00,00 LXI H 0000 Make HL – 0000

410B 01,00,00 LXI B 0000 Make BC – 0000

410E 39 Next DAD SP Add „SP‟ and „HL‟

410F D2, 13, 41 JNC Loop Jump to loop if no
 carry

4112 03 INX B Increment „BC‟ by one

4113 1B Loop DCX D Decrement „DE‟ By
 One

4114 7B MOV A,E Make E – A

4115 B2 ORA D „OR‟ gate between A

 & D

4116 C2,0E,41 JNZ Next Jump on if Number

 zero

4119 22,04,42 SHLD 4204 Store the LSB In
 memory

411C 69 MOV L,C Make C to L

411D 60 MOV H,B Make B to H

411E 22,06,42 SHLD 4206 Store the MSB In
 memory

4121 76 HLT Stop the program

7. Result:

Input

 Input Address Value

 4200 04

 4201 07

 4202 02

 4203 01

Output

 Output Address Value

 4204 08

 4205 12

 4206 01

 4207 00

40

8.Assignments:

Pick the example from textbook to multiply two 16 bit numbers in assembly language.

 9. Conclusion:

This experiment introduces concept of theory and programming ofBinary Arithmetic

multiplication.

It helped students in applying such operation in real time scenario on arithmetic.

Student should try the mentioned operations and implement them on coding.

41

EXPERIMENT NO.:4(b)

Multiplication of two 8bit numbers (bit rotation)

Contents Page No.

1.Objectives :………………………………………………………………..42

2.Expected outcomes of Experiment :………………………………………42

3.Theory :…………………………………………………………………....42

4. Equipment Required :………………..…………………………………....42

5.Procedure : ………………………………………………………………..42

6.Coding : …………………………………………………………………..44

7.Results : …………………………………………………………………..44

8.Assignments : …………………………………………………………….44

9.Conclusions : ……………………………………………………………..44

42

 1. Objective:

Write a program to perform multiplication of two 8 bit numbers using bit rotation

method.

2. Expected Outcomes of Experiment:

Ability to design and conduct experiment, as well as to analyze assembly programming.

An in-depth knowledge of applying the concepts on multiplication of two 8 bit numbers

using bit rotation method.

 3. Theory:

We will multiply the numbers using add and shift method. In this method, you add

number with itself and rotate the other number each time and shift it by one bit to left

alongwith carry. If carry is present add the two numbers.Initialize the count to 4 as we

are scanning for 4 digits. Decrement counter each time the bits are added. The result is

stored. Display the result.

Example:

Steps Product Multiplier Comments

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0 CY B3 B2 B1 B0

 0 0 0 0 0 0 0 0 0 0 1 0 1 Initial Stage

Step 1 0 0 0 0 0 0 0 0 0 1 0 1 0 Shift left by 1

 0 0 0 0 0 0 0 0 0 1 0 1 0 Don‟t add since CY= 0

Step 2 0 0 0 0 0 0 0 0 1 0 1 0 0 Shift

 0 0 0 0 1 1 0 0 1 0 1 0 0 Add multiplicand;CY=1

Step 3 0 0 0 1 1 0 0 0 0 1 0 0 0 Shift left by 1

 0 0 0 1 1 0 0 0 0 1 0 0 0 Don‟t add since CY= 0

Step 4 0 0 1 1 0 0 0 0 1 0 0 0 0 Add multiplicand;CY=1

4. Equipments Required:

8085 microprocessor kit.

 (0-5V) DC battery.

5. Procedure:

Algorithm:

 1. Start the program by loading HL register pair with address of memory location.

 2. Move the data to a register (E register).

 3. Get the second data and load into Accumulator.

43

 4. Add the two register contents.

 5. Check for carry.

 6. Increment the value of carry.

 7. Check whether repeated addition is over and store the value of product and carry in

memory location.

 8. Terminate the program.

44

6. Coding:

Program:

LXI H, 2200 H ;Initialize the memory pointer

MOV E , M ; Get multiplicand

MVI D, 00 H ; Extend to 16 bits

INX H ; Increment memory pointer

MOV A , M ; Get Multiplier

LXI H , 0000 H ; Product = 0

MVI B, 08 H ;Initialize counter with count 8

LOOP: DAD H ; Product = product X 2

 RAL

JNC XYZ ; Is carry from multiplier 1?

DAD D ; Yes, product = product + multiplicand

XYZ: DCR B ; Is counter = 0

JNZ LOOP ; No, repeat

SHLD 2300 H ; Store the result

HLT

 7. Results:

Multiplication has been carried out between the data of 2200H and 2201 H.

8.Assignments:

Pick the example from textbook to find multiplication of two 8 bit numbers by bit rotation method

in assembly language.

Write a program to find multiplication of 09 and 13 using bit rotation method.

9. Conclusions:

This experiment introduces concept of theory and programming ofBinary Arithmetic

addition. It helped students in applying such operation in real time scenario on

arithmetic. Student should try the mentioned operations and implement them on binary

addition.

45

EXPERIMENT NO.:4(c)

Multiply two 8-bit numbers by repetitive addition

Contents Page No.

1.Objective :…………………………………………….…………………..46

2.Expected outcomes of Experiment :……………………………………...46

3.Theory :…………………………………………………………………...46

4.Equipments Required :……………………………………………………46

5.Procedure : ……………………………………………………………….46

6.Coding : …………………………………………………………………..47

7.Results : …………………………………………………………………..47

8.Assignments : …………………………………………………………….48

9.Conclusions : ……………………………………………………………..48

46

1. Objective:

Write a program to multiply two 8-bit numbers by repetitive addition method using 8085.

2. Expected Outcomes of Experiment:

To familiarize with the assembly level programming to multiply two 8-bit numbers by repetitive

addition method using 8085.

Simplified the binary multiplication.

3. Theory:

Multiplication is nothing but repeated addition. In successive addition method, one

number is accepted and other number is taken as a counter. The first number is added

with itself, till the counter decrements to zero.

4. Equipments Required:

8085 microprocessor kit.

(0-5V) DC battery.

5. Procedure:

1. Switch ON the microprocessor training kit with built in power supply.

2. When the kit is ON then check, “UP 85” display on the display board.

3. Now press the REL/EXMEM key on the key board and check that “.”

(Dot) displayed.

4. Load machine code at the specific addresses in the user defined memory

from 2000 to 3FFF.

5. Fill the machine code on next address location by pressing the

NEXT key on keyboard and check the previous code by pressing PRE

key.

6. After entering the whole program, verify it by execution.

47

6. Coding:

7. Result:

The assembly language program for multiply two 8-bit numbers by repetitive addition

method was executed using 8085 micro processing kit.

Input:

4150(10)

4151(02)

Output:

4152(20)

4153(00)

ADDRESS OPCODE LABEL MNEMONIC OPERAND COMMENTS

2000 21,00,25 LXI H, 2500 H Address for

 count in H-L

 Pair

2003 4E MOV C, M Count in

 register C

2004 3E,00 MVI A, 00 Initial value

 of sum = 00

2006 23 LOOP INX H Address of

 next data in

 H-L pair

2007 86 ADD M Previous sum

 + next no.

2008 0D DCR C Decrement

 count.

2009 C2,06,20 JNZ LOOP

If count is not

zero, then jump

to LOOP

200C 32,50,24 STA 2450 H

Store sum in

2450H
200F 76 HLT

Halt

48

8.Assignments:

Write a program to multiply by repetitive addition 1101 0111 and 0111 1101.

9. Conclusions:

This experiment simplified Binary multiplication. It helped students in applying such

operation in real time scenario on arithmetic. Student should try the mentioned

operations and implement them.

49

EXPERIMENT NO.: 05(a)

16 – Bit division

Contents Page No.

1. Objectives:………………………………………………………………50

2.Expected outcomes of Experiment: ……………………………………..50

3.Theory:…………………………………………………………………..50

4. Equipments Required:………………………………………………...…51

5.Procedure: ……………………………………………………………….51

6. Coding: ………………………………………………………………….53

7. Results: …………………………………………………………………..53

8.Assignments: …………………………………………………………….53

9.Conclusions: ……………………………………………………………..54

50

1.Objective:

 To write an assembly language program for 16 bit division in 8085 microprocessor.

2. Expected Outcome of The Experiment:

To familiarize with the assembly level programming.

An in-depth knowledge of applying the concepts on binary division.

3. Theory:

16-bit division is the division of one 16-bit value by another 16-bit value, returning a 16-

bit quotient and a 16-bit remainder. I used r1/r0 for dividend/remainder and r3/r2 for

divisor/quotient.

Programming Tip: The number of bits in the quotient and the remainder can never be

larger than the number of bits in the original divident. For example, if you are dividing a

16-bit value by a 2-bit value, both the quotient and the remainder must be able to handle

a 16-bit result. If you are dividing a 24-bit value by a 16-bit value, the quotient and

remainder must both be able to handle a 24-bit result.

So, again, let's remember how we did division in elementary school. For example, 179

divided by 8:

 1 7 9 / 8 = 22 (quotient)

 1 6

 1 9

 1 6

 3 (remainder)

It's necessary to follow this same process step by step. There is a 3-digit-dividend, so we

expect 3 digits maximum for quotient. We "shift left" the divisor 2 digits (3-1) such that

the number of digits in the divisor is the same as the number of digits in the dividend. So

we get:

1 7 9 / 8 0 0 = ? ? ?

We divide the two numbers, multiply the result by the divisor and substract this result

from the dividend. In this first step 179 can't be divided by 800, so the the result is 0. We

subtract 0 from 179 and still have 179:

 1 7 9 / 8 0 0 = 0 ? ?

 0

 1 7 9

51

We then "shift right" the divisor 1 digit and repeat the process. 179 divided by 80 results

in an answer of 2. After we subtract 160 (2x80) we are left with a remainder of 19:

 1 7 9 / 8 0 = 0 2 ?

 1 6 0

 1 9

We repeat the process again until the divisor has shifted into its original position:

 1 7 9 : 8 = 0 2 2

 1 6 0

 1 9

 1 6

 3

This may have been an unnecessary review of elementary school math, but it is

important to remember exactly how the process is performed because we do exactly the

same with the 8052 in binary system.

In this routine we will place the original dividend into R1 (high-byte) and R0 (low-byte)

and the divisor in R3 (high-byte) and R2 (low-byte).

In the case of our example (179 divided by 8), the initial registers would be:

R1/R0 00000000 10110011

R3/R2 00000000 00001000

4. Equipments Required:

8085 microprocessor kit

 (0-5V) DC battery

5. Procedure:

Algorithm:

Step 1 : Start the microprocessor

Step 2 : Intialise „BC‟ as „0000‟ for Quotient

Step 3 : Load the divisor in „HL‟ pair and save it in „DE‟ register pair

Step 4 : Load the dividend in „HL‟ pair

Step 5 : Move the value of „a‟ to register „E‟

Step 6 : Subtract the content of accumulator with „E‟ register

Step 7 : Move the content „A‟ to „C‟ & „H‟ to „A‟

Step 8 : Subtract with borrow, the content of „A‟ with „D‟

52

Step 9 : Move the value of „a‟ to „H‟

Step 10 : If cy = 1, go to step 12, otherwise next step

Step 11 : Increment „B‟ register & jump to step „4‟

Step 12 : Add both contents of „DC‟ and „HL‟

Step 13 : Store the remainder in memory

Step 14 : Move the content of „C‟ to „L‟ & „B‟ to „H‟

Step 15 : Store the Quotient in memory

Step 16 : Stop the program

 yes

 yes

 Initialize the Quotient as zero
C = 00H

 Load the divisor in „HL‟ & move it „DE‟

 Transfer and Add the contents of A and B

If Cy=1

 Store the remainder in HL in memory

 Move the content of BC to „HL‟ pair accumulator

Subtract „HL‟ from „DE‟
increment BC pair
memory (Cy)

 Load the dividend in „HL‟ pair

 Intialise A with compare „E‟ & „L‟

Store the Quotient in HL to memory
accumulator

START

STOP

53

6. Coding:

Address Label Mnemonics Hex Code Comments

4500 LXI B,0000 0,00,00 Intialise Quotient as „0000‟

4503 LHLD 4802 2A,02,48 Load the divisor in „HL‟

4506 XCHG EB Exchange „HL‟ and „DE‟

4507 LHLD 4800 2A,00,48 Load the dividend

450A Loop 2 MOV A,L 7D Move the „L‟ value to „A‟

450B SUB E 93 (A-E) – A

450C MOV L,A 6F A- L (A value is move t L)

450D MOV A,H 7C H – A (a is stored with H)

450E SBB D 9A Subtract „D‟ from „A‟

450F MOV H,A 67 Then A is moved to „H‟

4510 JC loop 1 DA,17,45 If cy is present go to loop 1

4513 INX B 03 Increment BC pair by 1

4514 JMP loop 2 C3, 0A, 45 Jump to loop 2

4517 Loop 1 DAD „D‟ 19 „DE‟ and „HL‟ pair all added

4518 SHLD 4806 22,06,48 HL is stored in memory

451B MOV L,C 69 Move „C‟ register data to „L‟

451C MOV H,B 60 Move „B‟ register data to
 „H‟

451D SHLD 4804 22,04,48 Store the result in „HL‟ pair

4520 HLT 76 Stop the program

7.Result:

 Input

 Input Address Value

 4800 04

 4801 00

 4802 02

 4803 00

 Output

 Output Address Value

 4804 02

 4805 00

 4806 FE

 4807 FF

8. Assignment:

54

Write an assembly language code fordivision of any two 16 bit numbers by the

advice of instructor lab.

Write a program to divide 0022and 05EE.

9. Conclusion:

In this experiment, the motive was to introduce concept of theory and programming

Binary Arithmetic division.

At the end, student should try to learn as much as they can from this experiment and

should try problems in microprocessor.

55

EXPERIMENT NO.:05(b)

Division of two 8 – bit numbers

Contents Page No.

1. Objectives :……………………………………………………………….56

2. Expected outcomes of Experiment :……………………………………...56

3. Theory :…………………………………………………………………...56

4. EquipmentsRequired :…………………………………………………....56

5. Procedure : ……………………………………………………………….56

6. Coding : ………………………………………………………………….58

7. Results : ………………………………………………………………….58

8. Assignments : ………………………………………………………….…59

9. Conclusions : …………………………………………………………….59

56

1. Objective:

To write an assembly language program for dividing two 8 bit numbers using

microprocessor kit.

2.Expected Outcomes of Experiment:

 Understand the architecture, instruction set and programming of 8085 microprocessor.

An in-depth knowledge of applying the concepts on binary division.

 3. Theory:
A division algorithm can be characterized as follows:

Dividend = quotient ×divisor + remainder

To handle signed binary number division, we first convert both the dividend and the

divisor to positive numbers to perform the division, and then correct the signs of the

results as needed. We adopt a convention that the remainder and the dividend shall have

the same sign. That is, if the dividend is positive, then the remainder will be positive. If

the dividend is negative, then the remainder will be negative. As for the quotient, it will

be positive if the divisor and the dividend have the same sign. Otherwise, it will be

negative. Here are some examples that illustrate these conventions:

0111 ÷0011 = 0010 R 0001 (7 ÷3 = 2 reminder = 1)

0111 ÷1101 = 1110 R 0001 (7 ÷(−3)= −2 reminder = 1)

1001 †0011 = 1110 R 1111 (−7 †3 = −2 reminder = −1)

1001 †1101 = 0010 R 1111 (−7 †−3 = 2 reminder = −1)

4. Equipments Required:

8085 microprocessor kit.

(0-5V) DC battery

5. Procedure:

Algorithm:

Step 1 : Start the microprocessor

Step 2 : Initialize the Quotient as zero

Step 3 : Load the 1
st

 8 bit data

Step 4 : Copy the contents of accumulator into register „B‟

Step 5 : Load the 2
nd

 8 bit data

Step 6 : Compare both the values

Step 7 : Jump if divisor is greater than dividend

Step 8 : Subtract the dividend value by divisor value

Step 9 : Increment Quotient

Step 10 : Jump to step 7, till the dividend becomes zero

57

Step 11 : Store the result (Quotient) value in accumulator

Step 12 : Move the remainder value to accumulator

Step 13 : Store the result in accumulator

Step 14 : Stop the program execution

 yes no

no y

 yes

 Initialize the Quotient as zero

 Get the divisor

 Increment carry

If carry=0

 Decrement 2
nd

 number

 Store the remainder in accumulator

 Compare the dividend & divisor

 Add the accumulator with 1

st
 number

START

Dividend ?

 Move the remainder to accumulator

 Store the Quotient in accumulator

 Get the dividend

58

6. Coding:

Address Label Mnemonics Hex Code Comments

4100 MVI C, 00 0E, 00
Initialize Quotient as
zero

4102 LDA, 4500 3A 00, 45 Get the 1
st

 data

4105 MOV B,A 47 Copy the 1
st

 data into
 register „B‟

4106 LDA, 4501 3A 01, 45 Get the 2
nd

 data

4109 CMP B B8 Compare the 2 values

410A JC (LDP) DA 12,41 Jump if dividend lesser than
 divisor

410D Loop 2 SUB B 90 Subtract the 1
st

 value by 2
nd

 value

410E INR C 0C Increment Quotient (410D)

410F JMP (LDP, 41) C3, 0D, 41 Jump to Loop 1 till the value
 of dividend becomes zero

4112 Loop 1 STA 4502 32 02,45 Store The value in
 Accumulator

4115 MOV A,C 79 Move the value of remainder
 to accumulator

4116 STA 4503 32 03,45 Store the remainder value in
 Accumulator

4119 HLT 76 Stop the program execution

7. Results:

Input

 Input Address Value

 4500 09

 4501 02

Output

 Output Address Value

 4502 04 (quotient)

 4503 01 (reminder)

 1001

 0010 – I

 0111

 0010 – II

 0101

 0010 – III

 0011

 0010 – IV

End

59

 0001 – carry

Quotient - 04

Carry - 01

8.Assignments:

Pick the example from textbook to multiply two 16 bit numbers in assembly language.

Write a program to divide two 8-bit numbers 06 by 03.

9. Conclusions:

In this experiment, the motive was to introduce concept of theory and programming

Binary Arithmetic 8 bit division and To expertise the concepts of theory and

programming of microprocessor.

60

EXPERIMENT NO.:05(c)

Factorial of 8 Bit Number

Contents Page No.

1. Objectives :……………………………………………………………….61

2. Expected outcomes of Experiment :……………………………………...61

3. Theory :…………………………………………………………………...61

4. Equipments Required :……………………………………………………61

5. Procedure : ……………………………………………………………….61

6. Coding : ………………………………………………………………….62

7. Results : ……………………………………………………………….….63

8. Assignments : ………………………………………………………….…63

9. Conclusions : ……………………………………………………………..63

61

1. Objective:

To write an program to calculate the factorial of a number (between 0 to 8).

2. Expected Outcomes of Experiment:

Understand the architecture, instruction set and programming of 8085 microprocessor.

 An in-depth knowledge of applying the concepts on factorial of a number.

3. Theory:

The factorial, symbolized by an exclamation mark (!), is a quantity defined for all

integers greater than or equal to 0.

For an integer n greater than or equal to 1, the factorial is the product of all integers less

than or equal to n but greater than or equal to 1. The factorial value of 0 is defined as

equal to 1. The factorial values for negative integers are not defined.

Mathematically, the formula for the factorial is as follows. If n is an integer greater than

or equal to 1, then

n ! = n (n - 1)(n - 2)(n - 3) ... (3)(2)(1)

If p = 0, then p ! = 1 by convention.

The factorial is of interest to number theorists. It often arises in probability calculations,

particularly those involving combinations and permutations. The factorial also arises

occasionally in calculus and physics.

4. Equipments Required:

8085 microprocessor kit.

(0-5V) DC battery

5. Procedure:

Algorithm:

Step 1 : Initialize the stack pointer

Step 2 : Get the number in accumulator

Step 3 : Check for if the number is greater than 1. If no store the result

 Otherwise go to next step.

Step 4 : Load the counter and initialize result

Step 5 : Now factorial program in sub-routine is called.

Step 6 : In factorial,

http://searchcio-midmarket.techtarget.com/definition/integer

62

 Initialize HL RP with 0.

 Move the count value to B

 Add HL content with Rp.

 Decrement count (for multiplication)

Step 7 : Exchange content of Rp (DE) with HL.

Step 8 : Decrement counter (for factorial) till zero flag is set.

Step 9 : Store the result

Step 10 : Halt

Memory address Content

4250 05

4251 (12010)

6. Coding:

Memory Hex Code Label Mnemonics Comments

Location Op code Operand

4200 3A LDA 4250 Get the Number In
4201 50 accumulator

4202 42

4203 FE CPI 02H Compare data with 2
4204 02 and check it is greater

 than 1

4205 DA JC Loop 1 If cy =1 jump to loop 1
4206 17 If cy = 0 proceed

4207 42

4208 5F MOV E,A Move content of A to E

4209 16 MVI D,00 Load this term as a

420A 00

Resul

t

420B 3D DCR A Decrement

 accumulator by 1

420C 4F MOV C,A Move „A‟ content To
 „C‟ (counter 1 less than

 A)

420D CD CALL Facto Call sub Routine
420E 00 programe Facto

420F 46

4210 EB XCHG Exchange (DE) – (HL)

4211 22 SHLD 4251 Store content of HL in
4212 51 specified Memory

4213 42 location

4214 C3 JMP Loop 3 Jump to Loop 3

4215 1D

63

4216 42

4217 21 Loop 1 LXI H,0001H HL is loaded with data
4218 00 01

4219 01

421A 22 SHLD 4251 Store the Result In
421B 51 memory

421C 42

421D 76 Loop 3 HLT Terminate the program

Sub Routine

4600 21 Facto LXI H,0000 Initialize HL pair

4601 00

4602 00

4603 41 MOV B,C Content of „C‟ Is

 moved to B

4604 19 Loop 2 DAD D Content of DE is added
 with HL

4605 05 DCR B „B‟ is decremented

4606 C2 JNZ Loop 2 Multiply by successive
4607 04 addition till zero flag is

4608 46 set

7. Results:

Memory address Content

4250 04

4251 18

1 x 2 x 3
x 4 = 24
Hexadeci
mal

16 24
1-8

8.Assignments:

Pick the example from textbook to find factorial of 8 bit number in assembly language.

Write a program to find factorial of 10.

9. Conclusions:

In this experiment, the motive was to introduce concept of theory and programming

to find factorial and to expertise the concepts of theory and programming of

microprocessor.

64

EXPERIMENT NO.:06(a)

 Separation of hexadecimal number into two digits

Contents Page No.

1.Objectives :……………………………………………………………….65

2.Expected outcomes of Experiment :……………………………………...65

3.Theory :…………………………………………………………………...65

4.Equipments Required :………………………………………………..…..65

5.Procedure : ……………………………………………………………….65

6.Coding : …………………………………………………………………..66

7.Results : …………………………………………………………………..67

8.Assignments : …………………………………………………………….67

9.Conclusions : ……………………………………………………………..67

65

1. Objective:

 Separation of hexadecimal number into two digits.

2. Expected Outcomes of Experiment:

 Design circuits for various applications using microcontrollers

An in-depth knowledge of applying the concepts on addition of two 8 bit numbers neglecting

carry generated.

 3. Theory:

In mathematics and computing, hexadecimal (also base16, or hex) is a

positionalnumeral system with a radix, or base, of 16. It uses sixteen distinct symbols,

most often the symbols 0–9 to represent values zero to nine, and A, B, C, D, E, F (or

alternatively a, b, c, d, e, f) to represent values ten to fifteen.

Hexadecimal numerals are widely used by computer system designers and programmers.

As each hexadecimal digit represents four binary digits (bits), it allows a more human-

friendly representation of binary-coded values. One hexadecimal digit represents a

nibble (4 bits), which is half of an octet or byte (8 bits). For example, a single byte can

have values ranging from 00000000 to 11111111 in binary form, but this may be more

conveniently represented as 00 to FF in hexadecimal.

In a non-programming context, a subscript is typically used to give the radix, for

example the decimal value 10,995 would be expressed in hexadecimal as 2AF316.

Several notations are used to support hexadecimal representation of constants in

programming languages, usually involving a prefix or suffix. The prefix "0x" is used in

C and related languages, where this value might be denoted as 0x2AF3.

4. Equipments Required:

8085 microprocessor kit.

 (0-5V) DC battery.

5. Procedure:

Algorithm:

 Step 1 : Load the byte into acc.

 Step 2 : Clear the MS nibble and store it at 2101.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Positional_notation
https://en.wikipedia.org/wiki/Positional_notation
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Binary_code
https://en.wikipedia.org/wiki/Nibble
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/C_(programming_language)

66

 Step 3 : Load the byte from 2100.

 Step 4 : Clear the LS nibble and store it at 2102.

 Step 5 : Go back to monitor.

 Step 6 : Execute from 2000.

6. Coding:

Address Label Mnemonics Hex Code Comments

2000 Start LXI H, 2100 21 00 21 Point to first no.

2003 MOV B,M 46 Load count into B
register

2004 XRA A AF Clear A register

2005 Loop INX H 23 Point to 1st
number

2006 ADD M 86 Add memory to
total

2007 DCR B 05 Subtract from
count

2008 JMC LOOP C2 05 20 Test to see if done

200B STA 2100 32 00 21 Save the result

200E RST 5 EF

Start

Load the first byte in accumulator

Clear MS nibble

Load second byte from memory

Clear MS nibble

Store to next memory

Stop

67

7. Results:

Memory Address Data

2100 AF

2101 00

2102 00

After the program executes:

2100 AF

2101 0F

2102 A0

8. Assignments:

 Pick a hexadecimal number from textbook and separate it into two digits.

 Write a program to separate AB into two digits.

9. Conclusions:

This experiment introduces concept of theory and programming of separation of a

hexadecimal number into two digits.Student should try the mentioned operations and

implement them.

68

EXPERIMENT NO.:06(b)

Check the parity of hex numbers

Contents Page No.

1.Objectives :………………………………………………………………..69

2.Expected outcomes of Experiment :………………………………………69

3.Theory :…………………………………………………………………....69

4.Equipments Required :………………………………………………….…69

5.Procedure : ………………………………………………………………..69

6.Coding : ……………………………………………………………….….70

7.Results : …………………………………………………………………..71

8.Assignments : …………………………………………………………….71

9.Conclusions : ……………………………………………………………..71

69

1. Objective:

 Check the parity of hex numbers.

 2. Expected Outcomes of Experiment:

An in-depth knowledge of applying the concepts to check the parity of hex numbers.

3. Theory:

Parity: Parity of a number refers to whether it contains an odd or even number of 1-bits.

The number has “odd parity”, if it contains odd number of 1-bits and is “even parity” if

it contains even number of 1-bits. Main idea of the below solution is – Loop while n is

not 0 and in loop unset one of the set bits and invert parity.

4. Equipments Required:

8085 microprocessor kit.

(0-5V) DC battery.

5. Procedure:

Algorithm:

Step 1 : Set the memory counter to the data location 2010 and bring its

contents to accumulator.

Step 2 : OR the contents of accumulator with itself,

Step 3 : Check the parity register for odd or even parity and store 00 or

EE in location 2011 depending upon whether it is odd or even parity.

Step 4 : Go back to monitor.

Step 5 : Execute from 2000.

70

6. Coding:

Address Label Mnemonic Hex code Comment

2000 LXI H,2010 21 10 20 Set the memory

counter.

2003 MOV A,M 7E Get the first no. in

accumulator.

2004 ORA A B7 Set the flag.

2005 JPO ODD E2 0C 20 If the parity is

odd, jump to

Set memory counter to data location

Move data to accumulator

Or the content of accumulator

Check if

parity odd

stop

Start

Increment the memory pointer

Store EE to memory

Increment the memory pointer

Store 00 to memory

Stop

71

7. Results:

Output:

Memory location Data

2010 10

2010 30

8.Assignments:

Pick a hexadecimal number and check its parity.

Write a program to check the parity of 1F.

9. Conclusions:

This experiment introduces concept of theory and programming of to check the parity

of hexadecimal number.

ODD.

2008 INR L 2C Point to memory

location for result.

2009 MVI M,EE 36 EE Store EE in 2011.

200B RST 5 EF Go to monitor.

200C ODD INR L 2C Point to memory

location for result.

200D MVI M,00 36 00 Store 00 in 2011.

200F RST 5 EF Go to monitor.

2010 DATA

2011 RESULT

72

EXPERIMENT NO.:07

Speed Control of Stepper Motor

Contents Page No.

1.Objective :………………………………………………………………...73

2.Expected outcomes of Experiment :……………………………………….73

3.Theory :………………………………………………………………….....73

4.Equipments Required :………………………………………………….…74

5.Procedure : …………………………………………………………….….74

6.Coding : ……………………………………………………………….….75

7.Results : …………………………………………………………………..75

8.Assignments : …………………………………………………………….75

9.Conclusions : ……………………………………………………………..75

73

1. Objective:

To write an assembly program to make the stepper motor run in forward and reverse

direction.

2. Expected Outcomes of Experiment:

An in-depth knowledge of applying the concepts to run a stepper motor in forward and reverse

direction.

 3. Theory:

STEPPER MOTOR

A stepper motor is a brushless, synchronous electric motor that converts digital pulses

into mechanical shaft rotation. Every revolution of the stepper motor is divided into a

discrete number of steps, and the motor must be sent a separate pulse for each step.

INTERFACING STEPPER MOTOR WITH 8085

We now want to control a stepper motor in 8085 trainer kit. It works by turning ON &

OFF a four I/O port lines generating at a particular frequency.

74

4. Equipments Required:

8085 microprocessor kit.

(0-5V) DC battery.

Stepper motor

5. Procedure:

Algorithm:

Step 1 : Load the „HL‟ pair wit value from table

Step 2 : Move it to „B‟ register for setting the counter

Step 3 : Move the memory value to accumulator and display it by

 control word

Step 4 : Load „DE‟ register pair with FFFF for starting delay subroutine

Step 5 : Run the delay loop control D-register becomes zero.

Step 6 : Increment „H‟ address for next value from table

Step 7 : Jump on no zero

Step 8 : When B = 0, go to start and restart the program.

 Load „HL‟ register pair with data

 Load „E‟ with „04‟ (count)

 Load the „DE‟ pair with „FFFF‟

D=0?

 Start delay subroutine

Store the result in „HL‟

 Move memory to accumulator

 Display the accumulator content (8 bit port)

Result>1?

 Start

Store the result in „HL‟

 Decrement „D‟ by one, check
„OR‟ gate between „D‟ and E

75

6. Coding:

Memory Hex Code Label Mnemonics Comments

Location Op code Operand

4100 Start LXI H,Look up 21,1A,41 Load the „HL‟ with

 Data

4103 MVI B,04 06,04 B = 04

4105 Repeat MOV A,M 7E Memory value to „A‟

4106 OUT C0 D3, C0 Display it

4108 LXI D,03,03 11 Load „DE‟ with FFFF

410B Delay NOP 00 Start delay loop

410C DCX D 1B Decrement DE by 1

410D MOV A,E 7B Move „E‟ to „A‟

410E ORA D B2 Check De = 0 or not

410F JNZ DELAY C2, 0B,41 Jump on zero

4112 INX H 23 Increment HL by 1

4113 DCR B 05 Decrement B by 1

4114 JNZ Repeat C2,05,41 Jump on no zero

4117 JMP START C3,00,41 Jump to start

7. Result:

Input

 Input Address Value

 411A 0A

 411B 06

 411C 05

 411D 09

Reverse Direction

 Output Address Value

 411A 09

 411B 05

 411C 06

 411D 0A

8.Assignments:

Study about stepper motor in detail.

9. Conclusions:

This experiment introduces concept of theory and programming to run a motor in

forward and reverse direction.

76

EXPERIMENT NO.:08(a)

1’s complement of an 8 bit number

Contents Page No.

1.Objective :………..………………………………………………………..77

2.Expected outcomes of Experiment :………………………………………77

3.Theory :…………………………………………………………………....77

4.Equipments Required :…………………………………………………….77

5.Procedure : ………………………………………………………………..77

6.Coding : …………………………………………………………………..78

7.Results : …………………………………………………………………...78

8.Assignments : ……………………………………………………………..79

9.Conclusions : ……………………………………………………………..79

77

1. Objective:

 Write a program to find 1‟s complement of an 8 bit number.

2. Expected Outcomes of Experiment:

An in-depth knowledge of applying the concepts of finding 1‟s compliment of an 8 bit number.

 3. Theory:

The ones' complement of a binary number is defined as the value obtained by inverting

all the bits in the binary representation of the number (swapping 0s for 1s and vice

versa). The ones' complement of the number then behaves like the negative of the

original number in some arithmetic operations. To within a constant (of −1), the ones'

complement behaves like the negative of the original number with binary addition.

However, unlike two's complement, these numbers have not seen widespread use

because of issues such as the offset of −1, that negating zero results in a distinct negative

zero bit pattern, less simplicity with arithmetic borrowing, etc.

A ones' complement system or ones' complement arithmetic is a system in which

negative numbers are represented by the inverse of the binary representations of their

corresponding positive numbers. In such a system, a number is negated (converted from

positive to negative or vice versa) by computing its ones' complement. An N-bit ones'

complement numeral system can only represent integers in the range −(2
N−1

−1) to

2
N−1

−1 while two's complement can express −2
N−1

 to 2
N−1

−1.

4. Equipments Required:

8085 microprocessor kit.

(0-5V) DC battery.

5. Procedure:

1. This program finds the 1‟s complement of an 8-bit number stored in memory location

3000H.

2. Let us assume that the operand stored at memory location 3000H is 85H.

3. The operand is moved to accumulator from memory location 3000H.

4. Then, its complement is found by using CMA instruction.

5. The result is stored at memory location 3001H.

https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Binary_addition
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Negative_zero
https://en.wikipedia.org/wiki/Negative_zero
https://en.wikipedia.org/wiki/Negative_zero
https://en.wikipedia.org/wiki/Carry_(arithmetic)
https://en.wikipedia.org/wiki/Two%27s_complement

78

6. Coding:

Address Mnemonics Operand Opcode comments

2000 LDA 3000H 3A Load H-L pair with data

from 3000H.

2001 00 Lower-order of 3000H.

2002 30 Higher-order of 3000H.

2003 CMA 2F Complement accumulator.
2004 STA 3001H 32 Store the result at memory

location 3001H.
2005 01 Lower-order of 3001H.

2006 30 Higher-order of 3001H.

2007 HALT 76 Halt.

7. Result:

Output:

Before Execution:

Memory Address Data

3000H: 85H

After Execution:

Memory address Data

3001H: 7AH

Load accumulator with operand from memory.

 Complement accumulator.

Store the result from accumulator to memory.

 Start

 Stop

79

8.Assignments:

Take an eight bit number and find out its 1‟s compliment.

Find out 1‟s compliment of 11001001.

9. Conclusions:

This experiment introduces an alternative approach to signed magnitude in one‟s

complement where the first bit is again a sign bit.

80

EXPERIMENT NO.:08(b)

2’s complement of an 8 bit number

Contents Page No.

1.Objective :……………………………………………………………….81

2.Expected outcomes of Experiment :……………………………………..81

3.Theory :…………………………………………………………………...81

4.Equipments Required :…………………………………………………... 81

5.Procedure : ……………………………………………………………….81

6.Coding : ………………………………………………………………….82

7.Results : ………………………………………………………………….83

8.Assignments : ……………………………………………………………83

9.Conclusions : …………………………………………………………….83

81

1. Objective:

 Write a program to find 2‟s complement of an 8 bit number.

2. Expected Outcomes of Experiment:

An in-depth knowledge of applying the concepts of finding 2‟s compliment of an 8 bit

number.

 Simplified the binary subtraction.

3. Theory:

Two's complement is a mathematical operation on binary numbers, as well as a binary

signed number representation based on this operation. Its wide use in computing makes

it the most important example of a radix complement.

The two's complement of an N-bit number is defined as the complement with respect to

2
N
; This is also equivalent to taking the ones' complement and then adding one, since the

sum of a number and its ones' complement is all 1 bits. The two's complement of a

number behaves like the negative of the original number in most arithmetic, and positive

and negative numbers can coexist in a natural way.

In two's-complement representation, positive numbers are simply represented as

themselves, and negative numbers are represented by the two's complement of their

absolute value; two tables on the right provide examples for N = 3 and N = 8. In general,

negation (reversing the sign) is performed by taking the two's complement. This system

is the most common method of representing signed integers on computers. An N-bit

two's-complement numeral system can represent every integer in the range −(2
N − 1

) to

+(2
N − 1

 − 1) while ones' complement can only represent integers in the range −(2
N − 1

 − 1)

to +(2
N − 1

 − 1). The sum of a number and its two's complement will always equal 0

(since the last digit is truncated), and the sum of a number and its one's complement will

always equal −0.

4. Equipments Required:

8085 microprocessor kit.

 (0-5V) DC battery.

5. Procedure:

1. This program finds the 2‟s complement of an 8-bit number stored in memory location

3000H. 



 2. Let us assume that the operand stored at memory location 3000H is 85H. 



 3. The operand is moved to accumulator from memory location 3000H. 

https://en.wikipedia.org/wiki/Mathematical_operation
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Signed_number_representation
https://en.wikipedia.org/wiki/Method_of_complements
https://en.wikipedia.org/wiki/Method_of_complements
https://en.wikipedia.org/wiki/Ones%27_complement
https://en.wikipedia.org/wiki/Additive_inverse
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Ones%27_complement

82



 4. Then, its complement is found by using CMA instruction. 



 5. One is added to accumulator by incrementing it to find its 2‟s complement. 



 6. The result is stored at memory location 3001H. 

6. Coding:

Address Mnemonics Operand Opcode comments

2000 LDA 3000H 3A Load H-L pair with data

from 3000H.

2001 00 Lower-order of 3000H.

2002 30 Higher-order of 3000H.

2003 CMA 2F Complement accumulator.
2004 INR A 2C Increment accumulator.
2005 STA 3001H 32 Store the result at memory

location 3001H.
2006 01 Lower-order of 3001H.
2007 30 Higher-order of 3001H.

2008 HALT 76 Halt

Load accumulator with operand from memory.

 Complement accumulator.

Increment accumulator

 Start

 Stop

Store the result from accumulator to memory.

83

7. Result:

Output:

Before Execution:

Memory address Data

3000H: 85H

After Execution:

Memory address Data

3001H: 7BH

8.Assignments:

Write a program to find 2‟s compliment of 3510.

9. Conclusions:

This experiment simplified Binary subtraction. It helped students in applying such

operation in real time scenario on arithmetic.

Student should try the mentioned operations and implement them on 2‟s compliment.

84

EXPERIMENT NO.:09(a)

Generation of square wave

Contents Page No.

1.Objective :…………………………………………………..……………..85

2.Expected outcomes of Experiment :………………………………………85

3.Theory :…………………………………………………………………...85

4.Equipments Required :……………………………………………………85

5.Procedure : ……………………………………………………………….85

6.Coding : ………………………………………………………………….85

7.Results : ………………………………………………………………….86

8.Assignments : ……………………………………………………………86

9.Conclusions : …………………………………………………………….86

85

 1. Objective:

Write a program to generate square wave of 1 KHZ frequency using 8085

microprocessor kit.

2. Expected Outcomes of Experiment:

Students acquire knowledge about assembly language programming to generate square

wave of 1 KHZ frequency using 8085 microprocessor kit.

3. Theory:

A square wave is a non-sinusoidal periodic waveform in which the amplitude alternates

at a steady frequency between fixed minimum and maximum values, with the same

duration at minimum and maximum.

The DAC 0800 is a monolithic 8 bit high speed current output digital to analog

converters featuring setting time of 100nSEC. It also features high compliance

complementary current outputs to allow differential output voltage of 20 Vp-p with

simple resistor load and it can be operated both in unipolar and bipolar mode.

4. Equipments Required:

8085 microprocessor kit.

(0-5V) DC battery.

 5. Procedure:

1. Load the initial value (00) to the accumulator and move it to DAC.

2. Call the delay program.

3. Load the final value (FF) to the accumulator and move it to DAC.

4. Call the delay program.

5. Repeat steps 2 to 5.

 6. Coding:

 LABEL OPCODE OPERAND COMMENT

 LXI SP,2000H Load stack pointer

with immediate data of

2000H.

 MVI A,80H Load A register with

immediate data 80H.

 OUT 83H Send content of A

register to control word

register.

REPEAT: MVI A,FFH Load max. Count into

A register.

 OUT 80H Send data of A register

to register to port A

Of 8155.

 CALL DELAY Go to delay subroutine.

https://en.wikipedia.org/wiki/Non-sinusoidal_waveform
https://en.wikipedia.org/wiki/Frequency

86

 MVI A,00H Load Min. count into

A register.

 OUT 80H Send data of A register

to port A of 8155.

 CALL DELAY Go to delay subroutine.

 JMP REPEAT Jump to REPEAT to

generate square wave

continuously.

DELAY MVI B,”DELAY

COUNT”(B,0FH)

Load delay count value

into B register.

LOOP-1 DCR B Decrement delay count

value.

 JNZ LOOP-1 Jump to loop-1 if delay

count value is not

equal to zero.

 RET End of subroutine and

return back to main

program.

 7. Result:

 FFH

 00H

8. Assignments:

Write a program to generate square wave of 2 KHZ frequency using 8085

microprocessor kit.

 9. Conclusion:

The square wave was generated using 8085 microprocessor kit.

87

EXPERIMENT NO.:09(b)

Generation of triangular wave

Contents Page No.

1.Objective:…………………………………….………………………88

2.Expected outcomes of Experiment :…… …………………………88

3.Theory :…………………………………………………………….…88

4.Equipments Required :………………………………………………..88

5.Procedure : …………………………………………………………....89

6.Coding : ………………………………………………………………89

7.Results : ………………………………………………………………90

8.Assignments : ………………………………………………………...90

 9.Conclusions : ………………………………………………………...90

88

1. Objective:

Write a program to generate triangular wave of 1 KHZ frequency using 8085

microprocessor kit.

2. Expected Outcomes of Experiment:

Students acquire knowledge about assembly language programming to generate

triangular wave of 1 KHZ frequency using 8085 microprocessor kit.

3. Theory:

 Triangular wave is a periodic, non-sinusoidal waveform with a triangular shape. The

most important feature of a triangular wave is that it has equal rise and fall times.

 DAC 0800 is an 8–bit DAC and the output voltage variation is between–5V and +5V.

The output voltage varies in steps of 10/256=0.04. The digital data input and the

corresponding output voltages are presented-

Input Data in HEX

Output Voltage

00 -5.00

01 -4.96

02 -4.92

… …

7F 0.00

… …

FF 5.00

Referring to Table1, with 00H as input to DAC, the analog output is -5V. Similarly, with

FFH as input, the output is +5V. Outputting Digital data 00 and FF at regular intervals to

DAC.

 4. Equipments Required:

8085 microprocessor kit.

(0-5V) DC battery.

89

 5. Procedure:

1. Load the initial value (00) to accumulator.

2. Move the accumulator content to DAC.

3. Increment the accumulator content by 1.

4. If the accumulator content is zero proceed to next step else go to step 3.

5. Load value (FF) to the accumulator.

6. Move the accumulator content to DAC.

7. Decrement the accumulator content by 1.

8. If the accumulator content is zero proceed to step 1 else go to step 6.

6. Coding:

 LABEL OPCODE OPERAND COMMENT

 MVI A,80H Load A register with

immediate data 80H.

 OUT 83H Send content of A

register to control

word register.

LOOP-3 MVI A,00H Load initial count.

 OUT 80H Send count value to

port A of 8155.

LOOP-1 INR A Increment count

value.

 OUT 80H Send count value to

port A of 8155.

 CPI FFH Compare content of

A register with max.

count

 JNZ LOOP-1 Jump to LOOP-1 if

result of comparison

is not equal to zero.

LOOP-2 DEC A Decrement count

value.

 OUT 80H Send count value to

port A of 8155.

 CPI 00H Compare content of

A register with initial

count.

 JNZ LOOP-2 Jump to LOOP-2 if

result of comparison

is not equal to zero.

 JMP LOOP-3 Jump to LOOP-3 to

repeat process.

90

7. Results:

8. Assignments:

Write a program to generate triangular wave of 2 KHZ frequency using 8085

microprocessor kit.

 9. Conclusion:

 The triangular wave was generated using 8085 microprocessor kit.

91

EXPERIMENT NO.:09(c)

Generation of saw tooth wave

Contents Page No.

1.Objective:……………………………………..……………………….92

2.Expected outcomes of Experiment :…………………………………..92

3.Theory :………………………………………………………………..92

4.Equipments Required :………………………………………………...92

5.Procedure : …………………………………………………………….92

6.Coding : ……………………………………………………………….92

7.Results : ……………………………………………………………….93

8.Assignments : …………………………………………………………93

 9.Conclusions : ………………………………………………………….93

92

1.Objective:

Write a program to generate saw tooth wave of 1 KHZ frequency using 8085

microprocessor kit.

2. Expected Outcomes of Experiment:

Students acquire knowledge about assembly language programming to generate

triangular wave of 1 KHZ frequency using 8085 microprocessor kit.

3. Theory:

A linear, non-sinusoidal, triangular shape waveform represents a sawtooth waveform in

which fall time and rise time are different. A linear, non-sinusoidal, triangular shape

waveform represents a pure triangular waveform in which fall time and rise times are

equal. The Sawtooth Wave Generator is also known as asymmetric triangular waveform.

4. EquipmentRequired:

 8085 microprocessor kit.

 (0-5V) DC battery.

5. Procedure:

1. Load the initial value (00) to accumulator.

2. Move the accumulator content to DAC.

3. Increment the accumulator content by 1.

4. Repeat step 3 and 4.

 6. Coding:

 LABEL OPCODE OPERAND COMMENT

 MVI A,80H Load A register with

immediate data 80H.

 OUT 83H Send content of A

register to control

word register.

LOOP-2 MVI A,00H Load initial count.

 OUT 80H Send count value to

port A of 8155.

LOOP-1 INR A Increment count

value.

 OUT 80H Send count value to

port A of 8155.

 CPI FFH Compare content of

A register with max.

count.

 JNZ LOOP-1 Jump to LOOP-1 if

result of comparison

is not equal to zero.

 JMP LOOP-2 Jump to LOOP-2 to

repeat process.

93

7. Results:

 FFH

 00H

8. Assignments:

Write a program to generate triangular wave of 2 KHZ frequency using 8085

microprocessor kit.

 9. Conclusion:

 The triangular wave was generated using 8085 microprocessor kit.

94

EXPERIMENT NO.:10

Generation of beep sound on a buzzer

Contents Page No.

1.Objective:…………………….………………………………………...95

2.Expected outcomes of Experiment :…… …………………………...95

3.Equipments Required :…………………………………………………95

4.Coding : ……………………………………………………………….95

5.Results : ……………………………………………………………….96

6.Assignments : …………………………………………………………96

 7.Conclusions : ………………………………………………………….96

95

 1.Objective:

To generate beep sound on a buzzer using microcontroller 8051.

2. Expected Outcomes of Experiment:

Differentiatebetween microprocessors & microcontrollers.

 Identify the basic element and functions of microcontroller.

3. Equipment Required:

 8051 microcontroller kit with buzzer interface .

 Software for programming 8051.

 4. Coding:

#include "REG52.h"

#define buz P1

sbit SW=P3^0;

long int i;

void main()

{

while(1)

{

if (SW==0)

{

for(i=0;i<=90000;i++);

if(SW==0)

{

while(SW==0);

buz=0x01; // ON Buzzer

for(i=0;i<4500;i++); // Delay

buz=0x00; // OFF Buzzer

for(i=0;i<4500;i++); // Delay

} }

} }

96

 5. Results:

The Microcontroller 8051 was successfully programmed to generate “beep”

sound on buzzer.

 6. Assignments:

Build a microcontroller based project & do the programming on your own.

 7. Conclusion:

 Beep sound was successfully produced using 8051 microcontroller and buzzer.

97

EXPERIMENT NO.:11

 Display name on the LCD display

Contents Page No.

1.Objective: ………………………………..…………………………….98

2.Expected outcomes of Experiment :…….. ……………………………98

3.Equipments Required :………………………………………………...98

4.Coding : ……………………………………………………………….98

5.Results : ……………………………………………………………….99

6.Assignments : …………………………………………………………99

 7. Conclusions : ………………………………………………………...99

98

1.Objective:

To display your name on the LCD display of microcontroller 8051.

2. Expected Outcomes of Experiment:

Differentiatebetween microprocessors & microcontrollers.
Developingthe assembly language program & C language program for microcontroller

applications.

3. EquipmentRequired:

8051 microcontroller kit with LCD

 Software for programming 8051.

 4. Coding:

#include<reg52.h> //including sfr registers for ports of the controller

#include<lcd.h> //Can be download from bottom of this article

//LCD Module Connections

sbit RS = P0^0;

sbit EN = P0^1;

sbit D4 = P2^4;

sbit D5 = P2^5;

sbit D6 = P2^6;

sbit D7 = P2^7;

//End LCD Module Connections

void Delay(int a)

{

 int j;

 int i;

 for(i=0;i<a;i++)

 {

 for(j=0;j<100;j++)

 {

 }

 }

}

void main()

{

 int i;

 Lcd4_Init();

 while(1)

99

 {

 Lcd4_Set_Cursor(1,1);

 Lcd4_Write_String("Name");

 for(i=0;i<15;i++)

 {

 Delay(1000);

 Lcd4_Shift_Left();

 }

 for(i=0;i<15;i++)

 {

 Delay(1000);

 Lcd4_Shift_Right();

 }

 Lcd4_Clear();

 Lcd4_Set_Cursor(2,1);

 Lcd4_Write_Char('e');

 Lcd4_Write_Char('S');

 Delay(2000);

 }

}

 5. Results:

The Microcontroller 8051 was successfully programmed to display a name on the

LCD display.

6. Assignments:

Build a microcontroller based project & do the programming on your own.

 7. Conclusion:

 “Name” was successfully written on LCD of 8051 microcontroller.

100

EXPERIMENT NO.:12(a)

Addition of 8 bit numbers using microcontroller 8051

Contents Page no.

1.Objective :……………………………….……………………..…101

2.Expected outcomes of Experiment :…………………………...…101

3.Theory :…………………………………………………………...101

4.Equipments Required :…………………………………………...101

5.Procedure : ………………………………………………………102

6.Coding : …………………………………………………………102

7.Results : ………………………………………………………….102

8.Assignments : ……………………………………………………102

9.Conclusions : …………………………………………………….102

101

1.Objective:

To write an assembly language for adding two 8 bit numbers by using

microcontroller 8051 kit.

2. Expected Outcomes of Experiment:

Understanding of the addition of two eight bit numbers in microcontroller 8051.

3. Theory:

8 bit addition is much like decimal addition except that you are only adding 1s

and 0s. When the sum exceeds 1, carry a 1 over to the next-more-significant

column.

0 + 0 = 0 carry 0

0 + 1 = 1 carry 0

1 + 0 = 1 carry 0

1 + 1 = 0 carry 1

General form:A0 + B0 = 0 + Cout

 Where Summation symbol ()

Carry-out (Cout)

Truth table for addition of two binary

digits

A0 B0 ∑0 Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

4. Equipments Required:

 8051 microcontroller kit.

(0-5V) DC battery.

102

5. Procedure:

1. Clear C register for carry.

2. Get the data immediately.

3. Add the two data.

4. Store the result in memory pointed by DPTR.

 6. Coding:

PROGRAM:

ORG 4100

CLR C

MOV A,#data1

ADD A,#data2

MOV DPTR,#4500

MOVX @DPTR,A

HERE: SJMP HERE

7. Results:

Input 66, 32

Output 98(4500)

8. Assignments:

Solve examples from textbook for adding two eight bit numbers using 8051

microcontroller.

 9. Conclusion:

This experiment introduces concept of theory and programming ofBinary

Arithmetic addition. It helped students in applying such operation in real time

scenario on arithmetic. Student should try the mentioned operations and

implement them on binary addition.

103

EXPERIMENT NO.:12(b)

Subtraction of 8 bit numbers using microcontroller 8051

Contents Page no.

1. Objective :………………………………………………………………..104

2. Expected outcomes of Experiment :……………………………………..104

3. Theory :…………………………………………………………………..104

4. EquipmentRequired :……………………..……………………………...104

5. Procedure : ………………………………………………………………105

6. Coding : …………………………………………………………………105

7. Results : …………………………………………………………………105

8. Assignments : …………………………………………………………...105

9. Conclusions : ……………………………………………………………105

104

1.Objective:

To write an assembly language for subtracting two 8 bit numbers by using

microcontroller 8051 kit.

2. Expected Outcomes of Experiment:

 Understanding of the subtraction of two eight bit numbers in microcontroller 8051.

3. Theory:

8 bit addition is much like decimal addition except that you are only adding 1s and 0s.

When the sum exceeds 1, carry a 1 over to the next-more-significant column.

0 - 0 = 0 borrow 0

0 - 1 = 1 borrow 1

1 - 0 = 1 borrow 0

1 - 1 = 0 borrow 0

General form:A0-B0 =R0+ Bout

Remainder is R0

Borrow is Bout

Truth table for subtraction of two

binary digits

A0 B0 R0 Bout

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

4. Equipments Required:

 8051 microcontroller kit.

 (0-5V) DC battery.

105

5. Procedure:

1. Clear C register for carry.

2. Get the data immediately.

3. Subtract the two data.

4. Store the result in memory pointed by DPTR.

6. Coding:

PROGRAM:

ORG 4100

CLR C

MOV A,#data1

SUBB A,#data2

MOV DPTR,#4500

MOVX @DPTR,A

HERE: SJMP HERE

7. Results:

Input 66, 32

 Output 34(4500)

8. Assignments:
Solve examples from textbook for subtracting two eight bit numbers using 8051

microcontroller.

9. Conclusion:

This experiment introduces concept of theory and programming ofBinary Arithmetic

subtraction. It helped students in applying such operation in real time scenario on

arithmetic. Student should try the mentioned operations and implement them on binary

subtraction.

106

EXPERIMENT NO.:12(c)

Multiplication of 8 bit numbers using microcontroller 8051

Contents Page no.

1.Objective :…………………………………..……………………………107

2.Expected outcomes of Experiment :……………………………………..107

3.Theory :…………………………………………………………………..107

4.Equipments Required :…………………………………………………..107

5.Procedure : ………………………………………………………………107

6.Coding : …………………………………………………………………107

7.Results : …………………………………………………………………108

8.Assignments : …………………………………………………………...108

9.Conclusions : ……………………………………………………………108

107

1.Objective:

To write an assembly language for multiplying two 8 bit numbers by using

microcontroller 8051 kit.

2. Expected Outcomes of Experiment:

 Understanding of the multiplication of two eight bit numbers in microcontroller 8051.

3. Theory:

 Multiply the 2
0
 bit of the multiplier times the multiplicand.

 Multiply the 2
1
 bit of the multiplier times the multiplicand. Shift the result one

position to the left.

 Repeat step 2 for the 2
2
 bit of the multiplier, and for all remaining bits.

 Take the sum of the partial products to get the final product.

4. Equipments Required:

 8051 microcontroller kit.

 (0-5V) DC battery.

5. Procedure:

1. Get the data in A – reg.

2. Get the value to be multiplied in B – reg.

3. Multiply the two data.

4. The higher order of the result is in B – reg.

5. The lower order of the result is in A – reg.

6. Store the results.

 6. Coding:

ORG 4100

CLR C

MOV A,#data1

MOV B,#data2

MUL AB

MOV DPTR,#4500

MOVX @DPTR,A

INC DPTR

108

MOV A,B

MOVX @DPTR,A

HERE: SJMP HERE

7. Results:

Input 80 , 80

Output 00(4500) 19(4501)

8. Assignments:

Solve examples from textbook for multiplying two eight bit numbers using 8051

microcontroller.

 9. Conclusion:

This experiment introduces concept of theory and programming ofBinary Arithmetic

multiplication. It helped students in applying such operation in real time scenario on

arithmetic. Student should try the mentioned operations and implement them on binary

multiplication.

109

EXPERIMENT NO.:12(d)

Division of 8 bit numbers using microcontroller 8051

Contents Page no.

1.Objective :…………………………………………..…………………….110

2.Expected outcomes of Experiment :……………………………………...110

3.Equipment Required :…………..………………………………………...110

4.Procedure : ………………………………………………………………110

5.Coding : …………………………………………………………………110

6.Results : …………………………………………………………………111

7.Assignments : …………………………………………………………...111

8.Conclusions : ……………………………………………………………111

110

1.Objective:

To write an assembly language for division two 8 bit numbers by using microcontroller

8051 kit.

2. Expected Outcomes of Experiment:

 Understanding of the division of two eight bit numbers in microcontroller 8051.

3. Equipment Required:

 8051 microcontroller kit.

 (0-5V) DC battery.

4. Procedure:

1. Get the data in A – reg.

2. Get the value to be divided in B – reg.

3. Divide the two data.

4. The quotient is in A – reg..

5. The remainder is in B – reg.

6. Store the results.

 5. Coding:

PROGRAM:

ORG 4100

CLR C

MOV A,#data1

MOV B,#data2

DIV AB

MOV DPTR,#4500

MOVX @DPTR,A

INC DPTR

MOV A,B

MOVX @DPTR,A

HERE: SJMP HERE

111

6. Results:

Input 05 , 03

 Output 01(4500) 02(4501)

7. Assignments:

Solve examples from textbook for division two eight bit numbers using 8051

microcontroller.

8. Conclusion:

This experiment introduces concept of theory and programming ofBinary Arithmetic

division. It helped students in applying such operation in real time scenario on

arithmetic. Student should try the mentioned operations and implement them on binary

division.

