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1. Objective: 

Study of types of signals Deterministic and Stochastic (Continuous). 

2. Expected outcomes of experiment:  

1 Understanding continuous and stochastic (continuous) signal. 

2 Plotting both of them in MATLAB. 

3.Theory: 

Definition of Signal:  

 In communication systems, signal processingand Electrical Engineering, a signal is defined 

as a function that "conveys information about the behavior or attributes of some 

phenomenon". 

The IEEE Transactions on Signal Processing states that the term "signal" 

includes audio, video, speech, image, communication, geophysical, sonar, radar, medical and 

musical signals. 

In a communication system, a transmitter encodes a message to a signal, which is carried to 

a receiver by the communications channel. 

Continuous-time Signal: 

A continuous-time signal is a signal that can be defined at every instant of time. A 

continuous-time signal contains values for all real numbers along the X-axis. It is denoted 

by x(t). Figure 1(a) shows continuous-time signal. 

  

 

Fig.1.1 Continuous-time signal                               

 

 

 

https://en.wikipedia.org/wiki/Communication_systems
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Audio_signal
https://en.wikipedia.org/wiki/Video
https://en.wikipedia.org/wiki/Image
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Discrete-time Signal: 

Signals that can be defined at discrete instant of time is called discrete time signal. Basically 

discrete time signals can be obtained by sampling a continuous-time signal. It is denoted 

as x(n).Figure 1(b) shows discrete-time signal. 

 

 

Fig.1.2 Discrete-time signal 

Deterministic and Stochastic Signals 

A random signal cannot be described by any mathematical function, where as a deterministic 

signal is one that can be described mathematically. A common example of random signal is 

noise 

Further Continuous signals can be classified into two groups: 

Deterministic Signals: 

A signal is said to be deterministic if there is no uncertainty with respect to its value at any 

instant of time. Or, signals which can be defined exactly by a mathematical formula are 

known as deterministic signals. 

 

Figure 1.3  Deterministic Signal 

 Stochastic or Non-deterministic Signals:  A signal is said to be non-deterministic if 

there is uncertainty with respect to its value at some instant of time. Non-

deterministic signals are random in nature hence they are called random signals. 
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Random signals cannot be described by a mathematical equation. They are modeled 

in probabilistic terms. 

 

Figure 1.4 Stochastic Signal 

4.Equipments Required: 

A PC installed with MATLAB software. 

5  Procedure: 

 Open Matlab in your PC. 

 Open a new script. 

 Write the code as mentioned in the next heading in the script. 

 Save the script. 

 Run the script. 

 Desired result will be displayed on the command window. 

 

6.Coding: 

Deterministic Signals 

(a) Square Wave 

Square wave of amplitude A, fundamental frequency wo (in each rad/sec) and duty 

cycle rho (rho is the function of each period for which the signal is positive). 

Following is the complete set of commands:- 

A=1; 

wo=10*pi; 

rho=0.5; 
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t=0:0.001:1; 

sq=A*square(wo*t+rho);%generate square waveform % 

plot(t,sq) 

inv_sq=-sq;  % generate inverse square waveform% 

plot(t,inv_sq) 

amp_sq=1-sq;  %generate amplitude shift waveform% 

plot(t,amp_sq) 

hold on 

 

(b) Triangular Wave 

 

Triangular wave of amplitude A, fundamental frequency Wo (measured in rad/sec) and 

width W. Let the period of triangular wave be T, with the first maximum value occurring 

at t=WT. 

 

A=1; 

Wo=10*pi; 

W=0.5; 

t=0:0.001:1; 

tri=A*sawtooth(Wo*t+W);%generate triangular waveform% 

plot(t,tri) 

abs_tri=abs(tri);   % generate modulus of triangular waveform  % 

plot(t, abs_tri) 

half_tri=( tri+ abs_tri)/2; % generate half waveform of triangular waveform% 

plot(t,half_tri) 

c) Decaying exponential 

B=5; 

a=6; 

t=0:0.001:1; 

X=B*exp(-a*t); %generate decaying exponential waveform% 

plot(t,X) 

d) Growing exponential 

B=5; 

a=6; 
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t=0:0.001:1; 

X=B*exp(a*t);% generate growing exponential waveform% 

plot(t,X) 

e) Sinusoidal signal 

A=4; 

Wo=20*pi; 

phi=pi/6; 

t=0:0.001:1; 

Cosine=A*cos(Wo*t+phi); % generate sinusoidal signals% 

plot(t,Cosine) 

Random Signal:  

sig_length = 200;  

hold on 

sig = rand(1,sig_length); 

plot(1:sig_length,sig) 

axis tight 

title('Signal') 

7. Results and Discussions: 

Deterministic Signals: 

(a) Square Wave: Following square waveform is obtained by running program in Matlab 

of which amplitude is varying from -1 to 1. 

 

Fig 1.5(a) square waveform 
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Fig 1.5(b) inverse square waveform of Fig 1.5(a) 

 

 

 

                                         Fig 1.5(c) amplitude shift Square wave 

(b) Triangular Wave: 

 

 

Fig 1.6 (a) Triangular waveform 
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Fig 1.6(b)Half waveform of Triangular waveform of Fig 1.6 (a) 

(c)  Decaying Exponential: 

 

 

Fig 1.6 Decaying Exponential 

(d) Growing Exponential: 

 

 

Fig 1.7 Growing Exponential 
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(e) Sinusoidal Signal: 

 

 

Fig 1.8Sinusoidal Signal 

 

 

Stochastic Signal: 

 

 

Fig 1.9Stochastic Signal 
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8. Assignment: 

1. Write a MATLAB program to generate growing exponential and a sinusoidal 

signal. 

2. Generate various types of Random signals using MATLAB. 

 

9. Conclusion 

In this experiment, different types of Deterministic signals i.e., square wave, 

triangular, decaying exponential, growing exponential, sinusoidal and Stochastic 

(Continuous)signals are discussed and plotted in MATLAB.  
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1. Objective: 

Study of time properties of signals 

2. Expected outcomes of experiments: 

1. Understanding time properties of signals.  

2. Carrying out different transformation on signals such as multiplication, shifting, scaling, 

addition, subtraction, etc in MATLAB. 

3. Theory: 

 
Properties of signals 

 
There are some important properties of signal such as time reversal, amplitude-scaling, time-

scaling and time-shifting. 

Time Reversal: 

 

Until now, we have assumed our independent variable representing the signal to be positive. 

Why should this be the case? Can't it be negative? 

It can be negative. In fact, one can make it negative just by multiplying it by -1. This causes 

the original signal to flip along its y-axis. That is, it results in the reflection of the signal along 

its vertical axis of reference. As a result, the operation is aptly known as the time reversal or 

time reflection of thesignal. 

For example, let's consider our input signal to be x[n], shown in figure(a). The effect of 

substituting –n in the place of n results in the signal y[n] as shown in figure (b). 



3 
 

 
Fig 2.1 Time Reversal 

 

Here you can observe that the value of x[n] at the time instant n = -2 is -1. This is equal to the 

value of y[n] at n = 2. Likewise, x[-0.5] = y[0.5] = -1, x[1] = y[-1] = 1, and x[4] = y[-4] = 4 (as 

indicated by the green dotted-dashed-line arrows). 

This indicates that the graph of y[n] is nothing but the original signal x[n] reflected along the 

vertical axis (shown as a dotted orange line in the figure).This applies to both continuous- and 

discrete-time signals. 

Amplitude scaling: 

Consider a signal x(t) which is multiplying by a constant 'A' and this can be indicated by a 

notation x(t) → Ax(t). For any arbitrary 't', this multiplies the signal value x(t) by a constant 'A'. 

Thus, x(t) → Ax(t) multiplies x(t) at every value of 't' by a constant 'A'. This is called 
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Amplitude-scaling. If the amplitude-scaling factor is negative, then it flips the signal with the t-

axis as the rotation axis of the flip. If the scaling factor is -1, then only the signal will be flip. 

This is shown in the figures given below: 

 

Fig 2.2 Amplitude scaling 
 

Time scaling: 

Time scaling compresses or dilates a signal by multiplying the time variable by some quantity. If 

that quantity is greater than one, the signal becomes narrower and the operation is called 

compression. If that quantity is less than one, the signal becomes wider and the operation is 

called dilation. Figures below show the signal x(t), compression of signal and dilation of signal 

respectively. 

 

Fig 2.3Time scaling 
 Time Shifting: 

In signals and system amplitude scaling, time shifting and time scaling are some important 

properties. If a continuous time signal is defined as x(t) = s(t - t1). Then we can say that x(t) is 

the time shifted version ofs(t). 

Consider a simple signal s(t) for 0 < t < 1 

Now shifting the function by time t1 = 2 sec. 

x(t) = s (t-2)=t-2 for 0 < (t - 2) <1=t-2  for 2 < t <3
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Which is simply signal s(t) with its origin delayed by 2 sec. Now 

if we shift the signal by t1 = -1 sec. 

 
 

then x(t) = s (t+1) = t+1 for 0 < (t+1) 

= t+1 for -1 < t < 0. 
 

 

Which is simply s(t) with its origin shifted to the left or advance in time by 1 seconds. This time-

shifting property of signal is shown in the Figures given below. 

 
Fig 2.4 Time Shifting: 

 

Time-Delayed Signals: 

 

Suppose that we want to move this signal right by three units (i.e., we want a new signal whose 

amplitudes are the same but are shifted right three times). 

This means that we desire our output signal y[n] to span from n = 0to n = 6. Such a signal is 

shown as Figure 1(b) and can be mathematically written as y[n] = x[n-3]. 

This kind of signal is referred to as time-delayed because we have made the signal arrive three 

units late. 

Time-Advanced Signals: 

 

On the other hand, let's say that we want the same signal to arrive early. Consider a case where 

we want our output signal to be advanced by, say, two units. This objective can be 

accomplished by shifting the signal to the left by two time units, i.e., y[n] = x[n+2]. 
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The corresponding input and output signals are shown in Figure (a) and (b), 

respectively. Our output signal has the same values as the original signal but spans 

from n = -5 to n = 1 instead of n = -3 to n = 3. The signal shown in Figure 2(b) is 

aptly referred to as a time-advanced signal. 

 

 
 

 

Fig 2.6 Original signal and its time-advanced version 

For both of the above examples, note that the time-shifting operation performed 

over the signals affects not the amplitudes themselves but rather the amplitudes 

with respect to the time axis. We have used discrete-time signals in these 

examples, but the same applies to continuous-time signals. 

4. EquipmentsRequired: 

 
A PC installed with MATLAB software 

 

 

5  Procedure: 

 Open Matlab in your PC. 

 Open a new script. 

 Write the code as mentioned in the next heading in the script. 

 Save the script. 

 Run the script. 
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 Desired result will be displayed on the command window. 

 

6  Coding: 

Time Shifting of Signals: 

 
MATLAB can be used to perform shifting of signals. A signal can be delayed as well 

as advanced. The basic idea is to add the shift value to indices and thereby plotting 

the signal. 

The following is a program to delay or advance a signal x(n). The shift value is 

decided at the runtime. 

n1=input('Enter the amount to be delayed'); 

 n2=input('Enter the amount to be advanced'); n=-2:2; 

x=[-2 3 0 1 5]; 

subplot(3,1,1); 

stem(n,x);  

title('Signal x(n)'); 

m=n+n1; 

y=x;  

subplot(3,1,2); 

stem(m,y); 

title('Delayed signal x(n-n1)'); t=n-n2; 

z=x; subplot(3,1,3); 

stem(t,z); 

title('Advanced signal x(n+n2)'); 

 
Time reversing of signal: 

 

The inbuilt function fliplr() function can be used to perform reversing or folding a signal. 

Syntax: 

fliplr(a) : if a is row vector it returns a vector with the same size of a but with reversed order. 

if a is column vector it flips the elements one column to the other. 

Basic idea : 

 
1. flip theelements 

2. flip the indices with a ‘ – ‘sign. n=-1:2 

 

x=[3 -1 0 -4]; 

subplot(2,1,1) stem(n,x); 

axis([-3 3 -5 5]); 

title('Signal x(n)'); c=fliplr(x); y=fliplr(-n); 
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subplot(2,1,2) 

stem(y,c); 

axis([-3 3 -5 5]); 

title('Reversed Signal x(-n)') ; 

 
Time shifting and time scaling programming: 

t = -10 : 0.001 : 10; 

x =@(t) 0.*(t<-2) + (-4-(2.*t)).*(t>=-2 & t<0) + (-4+(3.*t)).*(t>=0 & t<4) + (16-

(2.*t)).*(t>=4 & t<8) + 2.*(t>=8); 

hold on plot(t, x(t),'r') 

plot(t, x(t+1).*3, 'c') 

plot(t, x(4*t)./2, '--m') 

plot(t, -2*x((t-1)/2) , ':b') grid on 

hold off 

 

 
Fig 2.7 Time shifting and time scaling 

 

 

 

 

7. Results and Discussion: Time shifting ofsignal: 

In this program, we have given delay of 2 units and advance of 3 units, therefore 

getting the graph of Original signal x(n), Delayed signal x(n-2) and Advanced signal 

x(n+2) in the following way: 
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Fig 2.8 Time shifting ofsignal 
 

Time Reversing of signal: 
 

Using fliplr command, the following Reversed signal x(-n) has been obtained from 

the Original signal x(n)

 

Fig .2.9 Time Reversing of signal 

 

 

8. Assignments: 

 

1.1  Add two signal X & Y where X= [0 1 6 5] and Y will be user defined. 

1.2  Multiply signal X with signal Y given that; X= [5 1 0 6] and Y= [-1 0 0.5 3] 

1.3 Compute the convolution of X= [5 4 0] and Y= [2 8 6]. 
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1.4 Amplitude scale the convolved signal obtained in by 3.  

 

9. Conclusion: 

This experiment introduces different types of operation of signals i.e. addition, subtraction, 

multiplication, shifting, reversal, convolution of two signals using MATLAB.It helped 

students in applying such operation in real time scenario on signals.  
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1 Objective: 

Study of frequency properties of signal 

2 Expected Outcomes of The Experiment: 

1. Understanding various aspects of Fourier transform.  

2. Understanding Discrete Fourier Transform (DFT) which is suitable for MATLAB 

implementation being discrete both in time and frequency  

3. Computing DFT using MATLAB commands fft and ifft 

3 Theory:  

Given a length N vector x representing one period of an N periodic signal x[n], the command 

 x = fft (x) /N produces  a length N vector X containing the DFT coefficients. 

Similarly, given DFT coefficients in vector X, the command 

x = ifft(x)*N 

(a) Find the DFT coefficient of signal: 

x[n]= 1 + sin{(nπ)/12 + (3π)/8} 

Program: 

x= ones(1,24) + sin ( ( (0:23)*pi) /12 + (3*pi)/8) 

x=fft(x)/24 

Solution: 

x[n]= 1 + sin{(nπ)/12 + (3π)/8} 

x = 

  

  Columns 1 through 12 

 

    1.9239    1.9914    1.9914    1.9239    1.7934    1.6088    1.3827    1.1305    0.8695    

0.6173    0.3912    0.2066 

 

  Columns 13 through 24 

 

    0.0761    0.0086    0.0086    0.0761    0.2066    0.3912    0.6173    0.8695    1.1305    

1.3827    1.6088    1.7934 

 

 

x = 

 

  Columns 1 through 6 
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   1.0000             0.4619 - 0.1913i   0.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 + 

0.0000i  -0.0000 - 0.0000i 

 

  Columns 7 through 12 

 

   0.0000 - 0.0000i   0.0000 - 0.0000i   0.0000 + 0.0000i  -0.0000 - 0.0000i  -0.0000 - 

0.0000i  -0.0000 - 0.0000i 

 

  Columns 13 through 18 

 

        0            -0.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 + 0.0000i   0.0000 - 

0.0000i   0.0000 + 0.0000i 

 

  Columns 19 through 24 

 

   0.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 - 0.0000i  -0.0000 - 0.0000i   0.0000 - 

0.0000i   0.4619 + 0.1913i 

  

(b) Reconstruction of signal from DFT coefficients: 

X recon = ifft(x,24) 

Program:  

x= ones(1,24) + sin ( ( (0:23)*pi) /12 + (3*pi)/8) 

x=fft(x)/24  

recon = ifft(x,24) 

Solution: 

X recon = ifft(x,24) 

x = 

 

 Columns 1 through 12 

  

    1.9239    1.9914    1.9914    1.9239    1.7934    1.6088    1.3827    1.1305    0.8695    

0.6173    0.3912    0.2066 

 

  Columns 13 through 24 

 

    0.0761    0.0086    0.0086    0.0761    0.2066    0.3912    0.6173    0.8695    1.1305    

1.3827    1.6088    1.7934 

 

x = 

  

  Columns 1 through 6 
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   1.0000             0.4619 - 0.1913i   0.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 + 

0.0000i  -0.0000 - 0.0000i 

 

  Columns 7 through 12 

 

   0.0000 - 0.0000i   0.0000 - 0.0000i   0.0000 + 0.0000i  -0.0000 - 0.0000i  -0.0000 - 

0.0000i  -0.0000 - 0.0000i 

 

  Columns 13 through 18 

 

        0            -0.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 + 0.0000i   0.0000 - 

0.0000i   0.0000 + 0.0000i 

 

  Columns 19 through 24 

 

   0.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 - 0.0000i  -0.0000 - 0.0000i   0.0000 - 

0.0000i   0.4619 + 0.1913i 

 

 

recon = 

 

  Columns 1 through 12 

 

    0.0802    0.0830    0.0830    0.0802    0.0747    0.0670    0.0576    0.0471    0.0362    

0.0257    0.0163    0.0086 

 

  Columns 13 through 24 

 

    0.0032    0.0004    0.0004    0.0032    0.0086    0.0163    0.0257    0.0362    0.0471    

0.0576    0.0670    0.0747 

  

(c) Partial sum evaluation tp x[n]: 

k=0:24 

n=-24:25 

B(1)= (25/50) 

B(2:25)= 2*sin((k*pi*(25/25))/(50*sin(k*pi/50))) 

B(26)= sin((k*pi*(25/50))/(50*sin(25*pi/50))) 

xhat(1,:)=B(1)*cos(n*0*pi/25) 

for k=2:26 

xhat(k,:)=xhat(k-1,:)+B(k)*cos(n*(k-1)*pi/25) 
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end 

(d) Compute the time bandwidth product using DFT: 

N=24;  

x=[0.0802 0.0830 0.0830 0.0802 0.0747 0.0670 0.0576 0.0471 0.0362 0.0257 0.0163 

0.00860 .0032 0.0004 0.0004 0.0032 0.0086 0.0163 0.0257 0.0362 0.0471 0.0576 

0.0670 0.0747]; 

m=(N-max(size(x)))/2; 

xc=[zeros(1,m),x,zeros(1,m)]; 

n=[-(N-1)/2:(N-1)/2]; 

n2=n'*n;  

td=sqrt((xc.*xc)*n2'/(xc*xc')); 

X=fftshift(fft(xc)/N); 

bw=sqrt(real((X.*conj(X))*n2'/(X*X'))); 

tbp=td.*bw 

Solution: 

tbp = 

 

  Columns 1 through 6 

 

        0 +14.3537i        0 +13.1055i        0 +11.8574i        0 +10.6092i        0 + 9.3611i        

0 + 8.1129i 

 

  Columns 7 through 12 

 

        0 + 6.8648i        0 + 5.6166i        0 + 4.3685i        0 + 3.1204i        0 + 1.8722i        

0 + 0.6241i 

 

  Columns 13 through 18 

 

        0 + 0.6241i        0 + 1.8722i        0 + 3.1204i        0 + 4.3685i        0 + 5.6166i        

0 + 6.8648i 

 

  Columns 19 through 24 

 

        0 + 8.1129i        0 + 9.3611i        0 +10.6092i        0 +11.8574i        0 +13.1055i        

0 +14.3537i 

 

4  Equipment Required: 

A PC installed with MATLAB software (preferably Matlab R 2017a) 
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5  Procedure: 

 Open Matlab in your PC. 

 Open a new script. 

 Write the code as mentioned in the next heading in the script. 

 Save the script. 

 Run the script. 

 Desired result will be displayed on the command window. 

 

6  Coding:  

6.1 Properties of Fourier Transform: 

(1) Linearity: Let x(t) be an input signal and y(t) be an output signal then according 

to linearity property- 

 
  
MATLAB Coding: 

n=0:1:40; 

a=2; 

b=-3; 

x1=(cos(2*pi*0.4*n)).*(cos(2*pi*0.4*(n-1))); 

x2=(sin(2*pi*0.4*n)).*(sin(2*pi*0.4*(n-1))); 

x=a*x1+b*x2; 

num=[2.2403 2.4908 2.2403]; 

den=[1 -0.4 0.75]; 

ic=[0 0]; 

y1=filter(num,den,x1,ic); 

y2=filter(num,den,x2,ic); 

y=filter(num,den,x,ic); 

yt=a*y1+b*y2; 

d=y - yt;  

subplot(3,2,1) 

stem(n,y); 

xlabel('Discrete Time Index n'); 

ylabel('Amplitude'); 

title('Response of input multiplication & scaling'); 

subplot(3,2,2) 

stem(n,yt); 

xlabel('Discrete Time Index n'); 

ylabel('Amplitude'); 

title('Response of output multiplication & scaling'); 
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subplot(3,2,3) 

stem(n,d); 

xlabel('Time Index n'); 

ylabel('Amplitude'); 

title('Difference Signal'); 

  

(2) Time Shifting: We assume thatϜ[x(t)]=x(jw) and Ϝ[y(t)]=y(jw) 

Then   Ϝ[x(t± t0)]=x(jw)exp(±jwt0) 

MATLAB Coding: 

x=input('Enter the input sequence'); 

n=input('Enter the delay integer'); 

x1=length(x); 

xn=x1+n; 

fori=1:xn; 

if(i<=n) 

xn0(i)=0; 

else 

xn0(i)=x(i-n); 

end;  

end; 

subplot(2,1,1); 

stem(x); 

title('Input sequence'); 

xlabel('time index'); 

ylabel('amplitude'); 

subplot(2,1,2); 

stem(xn0); 

title('delayed sequence'); 

xlabel('time index'); 

ylabel('amplitude'); 

figure; 

w=0:pi/xn:pi*(xn-1)/xn; 

X=fft(x,length(w)); 

Xn0=fft(xn0,length(w)); 

s=exp(-j*w*n).*X; 

subplot(2,1,1); 

stem(abs(Xn0)); 

title('DFT of the delayed sequence'); 

xlabel('time index'); 

ylabel('amplitude'); 

subplot(2,1,2); 
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stem(abs(s)); 

title('DFT of the original sequence*(e^-j*w*n)'); 

xlabel('time index'); 

ylabel('amplitude'); 

 

 

 

3) Frequency Shifting: We assume thatϜ[x(t)]=x(jw) 

 

MATLAB Coding: 

N=input('how many point dft do you want?'); 

x1=input('enter the seq'); 

n2=length(x1); 

c=zeros(N); 

x1=[x1 zeros(1,N-n2)]; 

for k=1:N 

for n=1:N 

w=exp((-2*pi*i*(k-1)*(n-1))/N); 

x(n)=w; 

end  

c(k,:)=x; 

end 

disp('dft is '); 

r=c*x1'; 

a1=input('enter the amount of shift in frequency domain'); 

for n=1:N 

w=exp((2*pi*i*(n-1)*(a1))/N); 

x2(n)=w; 

end 

r1=x2.*x1; 

subplot(221); 

stem(abs(r)); 

gridon; 

title('orginaldft magnitude plot'); 

subplot(222); 

stem(angle(r)); 

gridon; 

title('orginaldft angle'); 

for k=1:N 

for n=1:N 

w=exp((-2*pi*i*(k-1)*(n-1))/N); 

x(n)=w; 

end 

c(k,:)=x; 
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end 

disp('dft is'); 

r2=c*r1'; 

subplot(223); 

stem(abs(r2)); 

gridon; 

title('shifted dft magnitude'); 

subplot(224); 

stem(angle(r2)); 

gridon; 

title('shifeddft angle'); 

 

4) Convolution Theorem for Fourier Transform: 

The convolution theorem states that under suitable conditions the Fourier transform of 

a convolution is the pointwise product of Fourier transforms. In other words, convolution in 

one domain (e.g., time domain) equals point-wise multiplication in the other domain 

(e.g., frequency domain). Versions of the convolution theorem are true for various Fourier-

related transforms. Let f and g be two functions with convolution f*g . (Note that 

the asterisk denotes convolution in this context, and not multiplication. The tensor 

product symbol  is sometimes used instead.) 

Let F denote the Fourier transform operator, so  F{f} and F{g}  are the Fourier transforms of 

f  and g , respectively. Then 

 F{f*g} = F{f}.F{g}  

where . denotes point-wise multiplication.  

It also works the other way around: 

F{f.g}=F{f}.F{g} 

 

By applying the inverse Fourier transform  F
-1

, we can write: 

f*g=F
-1

{F{f}.F{g}} 

f.g=F{F{f}*F{g}}
 

 

 

5) Symmetry property of Fourier transform: 

One of the discrete-time Fourier transform properties is that if a sequence is conjugate 

symmetric, , then the Fourier transform is real. 

 For example:  

x=[1 2 3 2 1] 

The sequence above appears to be symmetric, but the output of fft(x) is complex: 

fft(x)  

thenans=9.000 -2.1180-1.5388i 0.1180+0.3633i 0.1180-0.3633i -2.1180+1.5388i 

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Pointwise_product
https://en.wikipedia.org/wiki/Time_domain
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Asterisk
https://en.wikipedia.org/wiki/Tensor_product
https://en.wikipedia.org/wiki/Tensor_product
https://en.wikipedia.org/wiki/Tensor_product
https://en.wikipedia.org/wiki/Operator_(mathematics)


10 
 

 
Fig. 3.1 Symmetry property of fourier transform 

 

For example, the conjugate symmetry property for the discrete Fourier transform looks like 

this: if , then the DFT is real. Then  x is circularly shifted as: 

xs = circshift(x,[0 -2]) 

xs=3 2 1 1 2 

Now take the DFT of xs: 

fft(xs) 

ans=9.000 2.6180  0.3820  2.6180 

Now the output is real, as expected. 

7  Results: 

a) Linearity: 

 
 

Fig. 3.2 Linearity Property of Fourier Transform 

 

b) Time Shifting: 
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Fig. 3.3 Time Shifting Property of Fourier Transform 

 

c) Frequency Shifting: 

 
Fig. 3.4Frequency Shifting Property of Fourier Transform 

8     ASSIGNMENT: 

1. Write a MATLAB programof convolution theorem using Fourier transform. 

2. Write a MATLAB programexhibiting symmetry property of Fourier transform. 
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9 Conclusion: 

In this experiment, the motive was to introduce Fourier transform and its properties on 

various signals through FFT algorithm using MATLAB. 
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1. Objective: 

Study ofstochastic properties of signal 

2. Expected Outcomes of Experiment: 

 

1. Understanding the concept of a stochastic process. 

2. Understanding randomness/ stochasticity, random experiment, random variable, 

and statistical averages like mean and variance. 

3. Understanding correlation between two random signals and its measurement by 

correlation coefficient, auto-correlation and cross-correlation. 

4. Understanding covariance between two random signals and its measurement by 

covariance coefficient, auto-covariance and cross-covariance. 

 

3. Theory: 

 

 3.1 Deterministic Signal: 

Each value of these signals is fixed and can be determined by a 

mathematical expression, rule, or table. Because of this, future values of any 

deterministic signal can be calculated from past values. 

 

3.1.1 Periodic Signal:  

A signal is a periodic signal if it completes a pattern within a measurable 

time frame, called a period and repeats that pattern over identical subsequent 

periods. 

 

 
 

Fig. 4.1 A Periodic Signal 

 

3.1.2 Aperiodic Signals: 
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A signal that does not repeats its pattern over a period is called aperiodic 

signal or non-periodic. 

 

 
Fig.4. 2 An Aperiodic Signal 

 

 3.2 Stochastic Signal: 

Stochastic/Random signals are those whose present value is neither depends 

of past nor on future values. Random signals cannot be characterized by a 

simple, well-defined mathematical equation. Hence their future values cannot be 

predicted. We must use probability and statistics to analyse their behaviour. 

 

 
Fig. 4.3 Plot of a Stochastic Signal 

 

3.2.1 Stationary Signals: 
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Statistical properties of the signal or process unchanged over time. 

 

3.2.2 Nonstationary Signals: 

Statistical properties of the signal/process change over time. 

 

 

3.3 Statistical Properties: 

 

3.3.1 Mean (): 

A measure of the centre or location of a probability distribution and indicate 

the average value of a random variable. 

𝜇 =  
  𝑋𝑖𝑛   

𝑖=0

𝑛
 

MATLAB code- mean(A, dim) 

An mean(A, dim) returns the mean along dimension dim.  

For example, if A is a matrix, then mean (A,2) is a column vector containing 

the mean of each row. 

 

 

3.3.2 Variance (𝝈𝟐): 

A measure of spread or dispersion of a distribution about its mean value. 

 

𝜎2 =  
  𝑋𝑖 − 𝜇 2𝑛

𝑖=0

𝑛 − 1
 

MATLAB code- var(A) 

var(A)returns the variance of the elements of A along the first array 

dimension whose size does not equal 1. 

 

3.3.3 Expectation (E): 

A statistical average of a function of a random variable with respect to its 

probability density function. 

𝐸 = 𝜇 

3.4 Stochastic Properties: 

  

3.4.1 Correlation: 

A measure of the affine relationship between two random variables, denoted 

by rxy. 

 

𝑟 𝑥 ,𝑦 =
𝐸( 𝑋 − 𝐸 𝑋   𝑌 − 𝐸(𝑌) )

𝜎𝑦𝜎𝑥
=

𝐶𝑂𝑉(𝑋, 𝑌)

𝜎𝑦𝜎𝑥
 

 

Where,  𝑟 𝑥 ,𝑦  = correlation of the variables x and y 

cov(x, y) = covariance of the variables x and y 
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𝜎𝑥= sample standard deviation of the random variable x  

𝜎𝑦  = sample standard deviation of the random variable y 

 

3.4.1.1 Auto-Correlation: 

Correlation of a stochastic signal with itself as a function of lag is termed 

as autocorrelation function (ACF). 

 

MATLAB code- autocorr(y, numLags) 

 

Autocorr(y, numsLags) plots the ACF, where numLags indicates the number 

of lags in the sample ACF. 

 

3.4.1.2 Cross-Correlation:  

Correlation between the samples of two stochastic signal as a function of lag 

is termed as cross-correlation sequence. 

 

MATLAB code- crosscorr(x, y, numLags) 

 

Crosscorr(x, y, numLags)  plots the sample cross correlation (XCF) between 

the two univariate, stochastic time series y1 and y2 with confidence 

bounds where numLags 

indicates the number of lags in the sample XCF. 

 

3.4.2 Covariance:  

The property of a signal of retaining its form when the variables are linearly 

transformed. 

𝐶𝑂𝑉 𝑋, 𝑌 = 𝐸( 𝑋 − 𝐸 𝑋   𝑌 − 𝐸(𝑌) ) 

x = the independent variable 

y = the dependent variable 

n = number of data points in the sample 

 = the mean of the independent variable x 

 = the mean of the dependent variable y 

3.4.2.1 Auto-Covariance: 

Covariance between the samples of a stochastic signal as a function of lag is 

termed the auto-covariance sequence. 

 

MATLAB code- cov(A) 

cov(A) returns the covariance. 

 

 

 

file:///C:\Program%20Files\MATLAB\R2016a\help\econ\crosscorr.html%23btzkul8-3
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Input- 

A = [5 0 3 7; 1 -5 7 3; 4 9 8 10]; 

C = cov(A) 

 

Output- 

C = 

    4.3333    8.8333   -3.0000    5.6667 

    8.8333   50.3333    6.5000   24.1667 

   -3.0000    6.5000    7.0000    1.0000 

    5.6667   24.1667    1.0000   12.3333 

 

Since the number of columns of A is 4, the result is a 4-by-4 matrix 

 

3.4.2.2 Cross-Covariance: 

Covariance between the samples of two stochastic signals as a function of 

lag is termed the cross-covariance sequence. 

 

MATLAB code- xcov(A, B) 

c = xcov(x, y) 

c = xcov(x, y) returns the cross-covariance of two discrete-time 

sequences, x and y. Cross-covariance measures the similarity between x and 

shifted (lagged) copies of y as a function of the lag. If x and y have different 

lengths, the function appends zeros at the end of the shorter vector so it has 

the same length as the other. 

 

4. Equipment Required: 

 

 A PC installed with MATLAB software. 

 

 

5. Procedure: 

 

  Open MATLAB in your PC.  

  Open a new script.  

  Write the code as mentioned in the next heading in the 

script.  

  Save the script.  

  Run the script.  

file:///C:\Program%20Files\MATLAB\R2016a\help\signal\ref\xcov.html%23outputarg_c
file:///C:\Program%20Files\MATLAB\R2016a\help\signal\ref\xcov.html%23inputarg_x
file:///C:\Program%20Files\MATLAB\R2016a\help\signal\ref\xcov.html%23inputarg_y
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  Desired result will be displayed on the command 

window 

6. CODING: 

 

6.1  Autocorrelation of continuous Sine wave 

 

clc; 

 

t=0:.01:2; 

f=2; 

a=1; 

X=a*sin(2*pi*f*t); 

 

subplot(2,1,1) 

plot(t,X);           %plotting Sine wave 

title('Sine Wave'); 

xlabel('Time') 

ylabel('Amplitude') 

grid on;  

 

subplot(2,1,2) 

autocorr(X,[100]);   %plotting Autocorrelation of Sine wave 

 

grid on; 

 

 

6.2 Cross-Correlation between two stochastic signals: 

 

clc; 

 

X=rand(1,100)        %Generating an array(100) of Random Numbers i.e. 

X 

subplot(3,1,1) 

plot(X)              % Plotting X matrix 

title('White Noise 1'); 

xlabel('Time') 

ylabel('Amplitude') 

 

Y=rand(1,100)        %Generating an array(100) of Random Numbers i.e. 

Y 

subplot(3,1,2) 

plot(Y)              % Plotting X matrix 

title('White Noise 2'); 
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xlabel('Time') 

ylabel('Amplitude') 

 

subplot(3,1,3) 

crosscorr(X,Y,50)    %Cross Correlation between X & Y signal 

6.3 Auto-Covariance of discrete Sine wave: 

 

clc; 

 

A=1; 

Omega=2*pi/12;   % Angular frequency 

phi=0; 

n=-10:10; 

y=A*cos(Omega*n); 

 

 

subplot(2,1,1) 

stem(n,y)                % Plotting discrete Sine wave 

title('SineWave'); 

xlabel('Time') 

ylabel('Amplitude') 

grid on;  

 

subplot(2,1,2) 

[cov_ww,lags] = xcov(y,30,'coeff'); 

stem(lags,cov_ww)        % Plotting Auto covariance of Discrete Sine Signal 

title('Auto covariance of Sine wave'); 

xlabel('Time Lag') 

ylabel('Coeff of Auto-cov') 

grid on; 

 

6.4 Cross-Covariance of Sine and Cosine wave: 

 

clc; 

 

t=0:.01:1; 

f=2; 

a=2; 

X=a*sin(2*pi*f*t); 

 

subplot(3,1,1) 

plot(t,X);              %Plotting Sine wave  

title('Sine Wave'); 

xlabel('Time') 
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ylabel('Amplitude') 

 

t=0:.01:1; 

f=2; 

a=2; 

Y=a*cos(2*pi*f*t); 

subplot(3,1,2) 

plot(t,Y);            %Plotting Cosine wave  

title('Cosine Wave'); 

xlabel('Time') 

ylabel('Amplitude') 

subplot(3,1,3) 

[cov_ww,lags] = xcov(X,Y,'coeff'); 

stem(lags,cov_ww)       % Plotting Cross covariance of Sine & Cosine 

signals       

title('Cross covariance of Sine & Cosine'); 

xlabel('Time Lag') 

ylabel('Coeff of Cross-Cov') 

grid on; 

 

7 Results: 

 

7.1 Autocorrelation of sine wave (spanning time 0 to 2 sec): 

 

 
 

Fig. 4.4 Auto-correlation of sine wave 
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The correlogram shows the peak correlations at lags 0, 25, 50, 75 & 100. 

Zero correlation at lags 13, 38, 63 & 88. Each lag is 0.02 sec. 

 

7.2 Cross-correlation between two stochastic signals: 

 

 
Fig.4. 5 Cross-correlation of two random signals 

 

As the coefficient of cross-correlation in fig. 5 is less than 0.2 for all lags excluding lags -45, 

-26, 0, 2, 22, 23. It concludes that, two white noise are barely related to each other. Each lag 

is 2 sec. 

 

7.3 Auto-Covariance of discrete Sine wave (spanning time -10 to 10 sec): 
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Fig. 4.6 Auto-covariance of discrete sine wave 

The peaks of Auto-Covariance of discrete Sine wave in fig. 6 are at lag 0, -6, -12, 6, 12. The 

zero coefficient of auto-covariance are at lag -3, 3, -9, 9, before -20 & after 20. Each lag is 1 

sec. 

7.4 Cross-Covariance between Sine and Cosine wave (spanning time 0 to 1 sec): 

 

 
Fig. 4.7 Cross-covariance of sine and cosine wave 
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Peaks of coefficient of cross-covariance in fig. 4.7 are at lag -12, -13, 12, 13, -37, -38, 37, 

38 while zero coefficient are at lag -100, -75, -50, -25, 0, 25, 50 & 100. Each time lag is 

0.01sec.  

 

 

8 Assignments: 

 

1. Plot auto-correlation of a stochastic signal of time 50 sec. Find the peaks and 

zeroes in the coefficient of auto-correlation plot. 

2. Plot cross-correlation between continuous Sine and Cosine wave (Amplitude 

= 2 & frequency = 2 Hz) signal. Find the time lags where both signals are 

maximally correlated. 

3. Plot auto-covariance of a stochastic signal of time 100 sec. Comment on the 

auto-covariance of the random signal. 

4. Plot cross-covariance between discrete exponential signal and sine signals 

choosing parameter of your own. Find the time lags for peaks of the 

coefficient of cross-covariance function. 

9. Conclusion: 

 

In this experiment, the motive was to introduce stochastic properties of different kinds of 

signals such as Continuous time signal, Gaussian white noise and discrete time signal and 

simulate them in MATLAB.  
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1. Objective 

Study of Discrete Signals through MATLAB 

2. Expected Outcomes of Experiment 

 

1. Acquiring and plotting various discrete signals like Discrete Square Wave, Discrete 

Exponential Wave, Discrete Sinusoidal Signal, Unit Step Sequences etc. using Matlab. 

2. Understanding and implementing various transformations on Discrete signals. 

3. Visualizing Impulse signals in discrete domain and their properties. 

4. Visualizing odd and even symmetries in signal. 

3. Theory 

Any time varying physical phenomenon that can convey information is called signal. Some 

examples of signals are human voice, electrocardiogram, sign language, videos etc. There are 

several classifications of signals such as Continuous time signal, discrete time signal and 

digital signal, random signals and non-random signals. 

Signals that can be defined at discrete instant of time is called “discrete time signal”. 

Basically discrete time signals can be obtained by sampling a continuous-time signal as 

shown in Fig.1. x(n) is discrete signal 

 

 

                                                                                    Fig5.1. Discrete signal 

 

It can also be defined in other ways as “A discrete signal or discrete-time signal is a time 

series consisting of a sequence of quantities”. 

Unlike a continuous-time signal, a discrete-time signal is not a function of a continuous 
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argument. However, it may have been obtained by sampling from a continuous-time signal. 

When a discrete-time signal is obtained by sampling a sequence at uniformly spaced times, it 

has an associated sampling rate. 

To distinguish between continuous-time and discrete-time signals we use symbol„t‟ to denote 

the continuous variable and ‘n’ to denote the discrete-time variable. 

A discrete-time signal x[n] may represent a phenomenon for which the independent variable 

is inherently discrete. A discrete-time signal x[n] may represent successive samples of an 

underlying phenomenon for which the independent variable is continuous. For example, the 

processing of speech on a digital computer requires the use of a discrete time sequence 

representing the values of the continuous-time speech signal at discrete points of time. 

Discrete-time signals may have several origins, but can usually be classified into one of two 

groups: 

 By acquiring values of an analog signal at constant or variable rate. This process is 

called sampling. 

 By observing an inherently discrete-time process, such as the weekly peak value of a 

particular economic indicator. 

 

Fig.5.2 Graphical representation of discrete signal. 

 

3.1. Signaloperations 

Signal operations play important role in the analysis of signals and systems. A number of 

important operations are performed on the signals and it is necessary to understand these 

operations in detail.  All these operations are discussed below. 

3.1.1. Operations Performed on Discrete Signals 
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Three important signal operations that can be performed on the signals are shifting, scaling 

and reversal (folding). Since time is taken as independent variable therefore these operations 

are also known as time-shifting, time-scaling and time-reversal respectively. All these 

operations are discussed below. 

a) Time Shifting: Consider a discrete time signal x[n], then the time shifted version of 

the signal x[n] represented as y[n] is defined as  

y[n] = x[n+n0] 

Now, n0 can be negative or positive. If n0 is negative, signal is shifted backwards and this is 

called “Time-Delayed Shifting”. If n0 is positive, signal is shifted forward and this is called 

“Time- Advanced Shifting”. Example of time-shifting is shown in Fig.5.3. 

 

 

Fig. 5.3 Signal x[n] and its time-delayed version x [n-2] 

b) Time Scaling:Consider a discrete time signal x[n],then “time-scaled” version of the 

signal x[n] can be represented as y[n] and is defined as , 

y[n]=x[an] 

If „a‟ is greater than 0 and is an integer, then the number of samples in signal y[n] 

reduces from that of x[n] and this is called “ Time-Compression/Decimation”. 

If „a‟ is greater than 0 and is a positive non integer, then the number of samples in 
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signal y[n] increases from that of x[n] and this is called “Time-

Expansion/Interpolation”. 

For example, let signal x[n] = {7, 9, 3, 2, 5, 4, 8} 

Then signal, y[n] =x [2n] can be represented as y[n] = {9, 2, 4} and y[n] represents 

the Time-Compressed signal.                                                                      ↑ 

Similarly, let x[n] = {7,-2, 5}, 

Then signal y[n] =x [n/2] canbe represented i.e. y[n] = {7, 0,-2, 0, 5}.  

Signal y[n] represents the Time-Expanded signal.↑ 

Note: Student must try to draw signal x[n] and y[n] graphically in matlab on their own 

and record in their workbook and arrow represents n=0 i.e. origin 

c) Time Reversal: Consider a discrete signal x[n] , then the time reversal version y[n] of 

signal x[n] is defined as, 

y[n] = x[-n] 

This is being shown in Fig.5.5 

 
                 Fig. 5.4 Discrete Signal x[n] and its time-reversal version y[n] =x[-n] about 

n=0 
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d) AMPLITUDE SCALING: Amplitude scaling of a discrete-time signal can be 

represented by, 

y[n] = ax[n], where „a‟ is constant 

 

If a > 1, it is amplification and if a < 1 it is attenuation. For example, as shown in 

8fig.7 below 

 

 
Fig. 5.5 Signal x(n) and its amplitude scaled version y(n) 

e) SIGNAL ADDITION & SUBTRACTION: In discrete-time domain, the sum of two 

signals x1[n] and x2[n]  can be obtained by adding the corresponding sample values  

Similarly the subtraction of x2[n] from x1[n] can be obtained by subtracting each 

sample of x2[n] from the corresponding sample of x1[n]. 

Let x1[n] = {1, 2, 3, 1, 5} and x2[n] = {2, 3, 4, 1, -2}. Then 

x1[n] + x2[n]= {3, 5, 7, 2, 3} 

x1[n] - x2[n]= {-1, -1, -1, 0, 7} 

f) Signal multiplication: The multiplication of two discrete time sequences is done by 

multiplying their values at sampling instants as shown below. 

If x1[n] = {1, 2, 3, 1, 5} and x2[n] = {2, 3, 4, 1, -2}. Then 

x1[n] .x2[n]= {2, 6, 12, 1, -10}. 

3.2EVEN AND ODD SIGNALS 

Any discrete signal x[n] is an even signal if,      

x[-n]= x[n] 

For example, let a signal x[n] is defined as x[n] = 

1

2
 , 𝑛 < 0

0  , 𝑛 = 0
1

2
    , 𝑛 > 0

  

Signal x[n] is an even signal as it holds the definition of even signal. Above signal can be 

graphically represented as: 
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Fig. 5.6 Even Signal 

Similarly, any discrete signal x[n] is an odd signal if, 

x[-n] = -x[n] 

For example, let a signal x[n] is defined as  

x[n]=  

−1

2
 , 𝑛 < 0

0  , 𝑛 = 0
1

2
    , 𝑛 > 0

  

Signal x[n] is an even signal as it holds the definition of even signal. Above signal can be 

graphically represented as below: 

 

Fig 5.7 Odd Signal 

It is important to note that any signal x[n] can be broken into two parts which are even and 

odd respectively as follows: 

xeven[n]=   
𝑥 𝑛 +𝑥[−𝑛]

2
 

xodd[n]=
𝑥 𝑛 −𝑥[−𝑛]

2
 

3.3 CONVOLUTION 

In discrete time, convolution of two signals involves summing the product of the two signals, 

where one of the signals is “flipped and shifted”.  

In other words, convolution is also defined as an operation between the input signal to a 

system, and its impulse response, resulting in the output signal. 
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Mathematically convolution is given by, 

y[n] = x[n] * z[n] =  𝐱 𝐤 𝐳[𝐧 − 𝐤]+∞
−∞  

where, x[n] and z[n] are the two discrete signals to be convolved. 

 

3.3.1 PROPERTIES OF CONVOLUTION 

 Commutative property: x[n] * h[n] = h[n] * x[n] 

 Associative property: (x[n] * h1[n]) * h2[n] = x[n] * (h1[n] * h2[n]) 

 Distributive property: x[n] * (h1[n]+h2[n]) = x[n] * h1[n]+ x[n]* h2[n]) 

 Shifting property: if  x[n] * h[n] = y[n] , then  x[n-k] * h[n-m] = y[n-k-m] 

 Convolution with an impulse: x[n] * δ[n] = x[n] 

3.4 DISCRETE IMPULSE FUNCTION 

The discrete- time unit impulse function δ(n), also called unit sample sequence, is defined as:  

𝛿 𝑛 =   
1 𝑓𝑜𝑟𝑛 = 0
0 𝑓𝑜𝑟𝑛 ≠ 0

  

This means that unit sample sequence is a signal that is zero everywhere, except at n=0, 

where its value is unity. It is the most widely used elementary signal used for analysis of 

signal and systems 

3.4.1 PROPERTIES OF DISCRETE IMPULSE FUNCTION 

  a) δ(n) = u(n) - u(n-1) where u(n) is discrete unite step function and u(n-1) is its time shifted 

version. 

  b) δ n − k =   
1 𝑓𝑜𝑟𝑛 = 𝑘
0 𝑓𝑜𝑟𝑛 ≠ 𝑘

  . 

  c) δ(n) is an even function. 

  d) δ(an) = δ(n). 

  e) x(n)=  𝑥(𝑘)δ(n − k)𝑘=+∞
𝑘=−∞ . 

  f) x(n)*δ(n-n1) = x(n-n1). 

  g) x(n) .δ(n-n1) = x(n1) .δ(n-n1) . 

3.5 Z-TRANSFORM 

The bilateral or two sided Z- transform of a discrete signal x[n] is defined as:  

X(z) =  𝐱[𝐧]𝐳−𝐧∞
𝐧=−∞  

Where „z‟ is a complex variable. 

The one sided or unilateral Z-transform is defined as: 
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X(z)=  𝒙[𝒏]𝒛−𝒏∞
𝒏=𝟎  

3.5.1 CONVOLUTION PROPERTY OF Z-TRANSFORM 

The convolution property of z-transform states that the Z-transform of the convolution of two 

signals is equal to the multiplication of their z-transform, i.e.  

If x1(n) ↔ X1(z) (means X1(z) is z-transform of x1(n)) with ROC=R1 and x2(n) ↔ X2(z) then, 

x1(n)* x2(n) ↔ X1(z). X2(z) 

 

4. Equipment Required: 

A PC installed with MATLAB software (preferably Matlab R 2017a) 

5. Procedure  

 Open Matlab in your PC. 

 Open a new script. 

 Write the code as mentioned in the next heading in the script. 

 Save the script. 

 Run the script. 

 Desired result will be displayed on the command window. 

6 CODING 

(a) Discrete square wave: 

A=1; 

Omega=pi/4; 

rho=0.5; 

n=-10:10; 

x=A*square(Omega*n+rho); 

stem(n,x) 

(b) Discrete exponential wave: 

B=1; 

r=0.85; 

n=-10:10; 

x=B*power(r,n); 

stem(n,x) 

Note: 0<r<1 for Decaying exponential and   r>1 for Growing exponential 
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(c) Discrete sinusoidal signal: 

A=1; 

Omega=2*pi/12; % this is angular frequency 

phi=0; 

n=-10:10; 

y=A*cos(Omega*n); 

stem(n,y) 

(d) Unit Step Sequence 

No=1; 

n1=-10; 

n2=10; 

n= [n1:n2]; 

x= [(n-no)>=0]; 

stem(n,x) 

(e) Even and Odd components of a sequence y(n)=u(n)-u(n-10). 

n= -15:1:15 

y1=[zeros(1,15),ones(1,10),zeros(1,6)] 

y2=fliplr(y1) 

ye=0.5*(y1+y2) 

yo=0.5*(y1-y2) 

subplot(2,2,1) 

stem(n,y1) 

xlabel('time ') 

ylabel('amplitude') 

title('y(n)') 

subplot(2,2,2) 

stem(n,y2) 

xlabel('time ') 

ylabel('amplitude') 

title('y(-n)') 

subplot(2,2,3) 

stem(n,ye) 

xlabel('time ') 

ylabel('amplitude') 
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title('ye(n)') 

subplot(2,2,4) 

stem(n,yo) 

xlabel('time ') 

ylabel('amplitude') 

title('yo(n)') 

 

(f) Multiplication of discrete-time signals. 

% x1(n)= 6*a^n    …………………….signal 1 

n=0:0.1:5 

a=2 

x1=6*(a.^n) 

subplot(3,1,1) 

stem(n,x1) 

title('x1(n)') 

% x2(n)=2*cos(wn)……………………signal 2 

f=1.2 

x2=2*cos(2*pi*f*n) 

subplot(3,1,2) 

stem(n,x2) 

title('x2(n)') 

%multiplication of two sequences  

y=x1.*x2 ……………………………..multiplication of two signals 

subplot(3,1,3) 

stem(n,y) 

xlabel('time n') 

ylabel('amplitude') 

title('y(n)') 

(g) Convolution of two sequences 

x1=[1 2 0 1] 

x2=[2 2 1 1] 

y=conv(x1,x2) 

disp('the convolution output is') 

disp(y) 

subplot(3,1,1) 

stem(x1) 

xlabel('Discrete time') 

ylabel('amplitude') 

title('first input sequence') 

subplot(3,1,2) 

stem(x2) 

xlabel('Discrete time') 

ylabel('amplitude') 

title('second input sequence') 
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subplot(3,1,3) 

stem(y) 

xlabel('Discrete time') 

ylabel('amplitude') 

title('convolution output') 

 

7. RESULTS AND DISCUSSION: 

a) Discrete square wave: 

 

Fig 5.8Discrete square wave 

 

b) Discrete exponential wave: 

 

Fig 5.9Discrete exponential wave 
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c) Discrete sinusoidal signal: 

 

Fig 5.10 Discrete sinusoidal signal 

d) Unit Step sequence: 

 

Fig 5.11 Unit Step sequence 
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e) Even and Odd components of a sequence y(n)=u(n)-u(n-10)  

 

Fig 5.12 Even and Odd components 
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f) Multiplication of two discrete signals 

 

Fig 5.13 Multiplication of two discrete signals 

g) Convolution of two sequences 
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Fig 5.14 Convolution of two sequences 

 

The convolution output is [2 6 5 5 4 1 1] 

8. Assignments 

1. Write Matlabcode to generate “discrete triangular wave”. Apply the following 

properties on the generated waveform:  

a. Amplitude Scaling. 

b. Time Scaling. 

c. Time Shifting. 

2. If we shift a discrete-time impulse function by 0.6 then 

a. Discrete time impulse function will be scaled by a value of 0.6. 

b. Discrete time impulse function will not shift for any float value. 

c. Discrete time impulse function will shift with 0.6 value in time axis. 

Also cite the reason for the chosen answer. 

3. Generate the signal x[n] = u[n+3]+5u[n-15]+4u[n+10] and record the waveforms in 

your record book. 

4. Write a program in Matlab to find z-transform of signal x[n]=cos(w0n). 
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5. Write a program in Matlab to generate a unit ramp sequence, unit parabolic sequence 

and a unit impulse sequence. Assume data accordingly. 

6. Write a program in Matlab to ADD and SUBTRACT the signals used in 

“multiplication of two discrete signals”.  

9. Conclusion 

In this experiment, various discrete signals are obtained and their properties are studied using 

MATLAB. After performing this experiment students will be able to tackle different signals 

in discrete time domain. At the end, students should try to learn as much as they can from this 

experiment and should try to find innovative ways of doing whatever is left in discrete 

systems (due to time constraint) on their own which would enhance their knowledge about 

use of MATLAB in discrete time domain. 

 



1 
 

Experiment No: 6 

Basic Properties of Linear systems 

1.Objective.. :………………………………………………………………2 

2.Expected outcomes of Experiment :……………………………………..2 

3.Theory :…………………………………………………………………..2 

4.Equipments Required :…………………………………………………..5 

5.Procedure : ……………………………………………………………….5 

6.Coding : ………………………………………………………………….6 

7.Results : ………………………………………………………………….7 

8.Assignments : ……………………………………………………………8 

9.Conclusion :.. …………………………………………………………….8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

1 Objective: 

Basic Properties of Linear systems 

2 Expected Outcomes of Experiment: 

1. Understanding various properties of a system like linearity, shift invariance, stability, 

causality, memoryless, invertibilty. 

2. Implementing and visualizing signal addition, signal subtraction, signal multiplication. 

3 Theory:  

A system is any physical device, process or computer algorithm that transforms input signals 

into output signals.In this experiment we shall look at following properties of system: 

Linearity, time Invariant, Stability, Causality, Memory, etc. 

Systems are classified into the following categories: 

 Linear and Non-linear Systems 

 Time Variant and Time Invariant Systems 

 Liner Time variant and Liner Time invariant systems 

 Static and Dynamic Systems 

 Causal and Non-causal Systems 

 Invertible and Non-Invertible Systems 

 Stable and Unstable Systems 

(a) Linear and Non-linear Systems 

A system is said to be linear when it satisfies superposition and homogenate principles. 

Consider two systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. 

Then, according to the superposition and homogenate principles, 

T [a1 x1(t) + a2 x2(t)] = a1 T[x1(t)] + a2 T[x2(t)] 

∴ T [a1 x1(t) + a2 x2(t)] = a1 y1(t) + a2 y2(t) 

From the above expression, is clear that response of overall system is equal to response of 

individual system. 

 

 



3 
 

Example: 

(t) = x
2
(t) 

Solution: 

y1 (t) = T[x1(t)] = x1
2
(t) 

y2 (t) = T[x2(t)] = x2
2
(t) 

T [a1 x1(t) + a2 x2(t)] = [ a1 x1(t) + a2 x2(t)]
2
 

Which is not equal to a1 y1(t) + a2 y2(t). Hence the system is said to be non linear. 

(b) Time Variant and Time Invariant Systems  

A system is said to be time variant if its input and output characteristics vary with time. 

Otherwise, the system is considered as time invariant. 

The condition for time invariant system is: 

y (n , t) = y(n-t) 

The condition for time variant system is: 

y (n , t) ≠ y(n-t) 

Where y (n , t) = T[x(n-t)] = input change 

y (n-t) = output change 

Example: 

y(n) = x(-n) 

y(n, t) = T[x(n-t)] = x(-n-t) 

y(n-t) = x(-(n-t)) = x(-n + t) 

∴∴ y(n, t) ≠ y(n-t). Hence, the system is time variant. 

 

(c) Linear Time variant (LTV) and Linear Time Invariant (LTI) Systems 

If a system is both linear and time variant, then it is called linear time variant (LTV) system. 

If a system is both linear and time Invariant then that system is called linear time invariant 

(LTI) system. 
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(d) Static and Dynamic Systems 

Static system is memory-less where as dynamic system is a memory system. 

Example 1: y(t) = 2 x(t) 

For present value t=0, the system output is y(0) = 2x(0). Here, the output is only dependent 

upon present input. Hence the system is memory less or static. 

Example 2: y(t) = 2 x(t) + 3 x(t-3) 

For present value t=0, the system output is y(0) = 2x(0) + 3x(-3). 

Here x(-3) is past value for the present input for which the system requires memory to get 

this output. Hence, the system is a dynamic system. 

(e) Causal and Non-Causal Systems 

A system is said to be causal if its output depends upon present and past inputs, and does not 

depend upon future input. 

For non causal system, the output depends upon future inputs also. 

Example 1: y(n) = 2 x(t) + 3 x(t-3) 

For present value t=1, the system output is y(1) = 2x(1) + 3x(-2). 

Here, the system output only depends upon present and past inputs. Hence, the system is 

causal. 

Example 2: y(n) = 2 x(t) + 3 x(t-3) + 6x(t + 3) 

For present value t=1, the system output is y(1) = 2x(1) + 3x(-2) + 6x(4) Here, the system 

output depends upon future input. Hence the system is non-causal system. 

(f) Invertible and Non-Invertible systems 

A system is said to invertible if the input of the system appears at the output. 

 

Fig. 6.1 Invertible and Non-Invertible system 

Y(S) = X(S) H1(S) H2(S) 

= X(S) H1(S) · 1(H1(S))1(H1(S))       Since H2(S) = 1/( H1(S) ) 
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∴Y(S) = X(S) 

y(t) = x(t) 

Hence, the system is invertible. 

If y(t) ≠ x(t), then the system is said to be non-invertible. 

(g) Stable and Unstable Systems 

The system is said to be stable only when the output is bounded for bounded input. For a 

bounded input, if the output is unbounded in the system then it is said to be unstable. 

Note: For a bounded signal, amplitude is finite. 

Example 1: y (t) = x
2
(t) 

Let the input is u(t) (unit step bounded input) then the output y(t) = u2(t) = u(t) = bounded 

output. 

Hence, the system is stable. 

Example 2: y (t) = ∫x(t)dt∫x(t)dt 

Let the input is u (t) (unit step bounded input) then the output y(t) = ∫u(t)dt∫u(t)dt= ramp 

signal (unbounded because amplitude of ramp is not finite it goes to infinite when 

t →→ infinite). 

Hence, the system is unstable. 

4 Equipment Required: 

A PC installed with MATLAB software 

5 Procedure: 

 Open Matlab in your PC. 

 Open a new script. 

 Write the code as mentioned in the next heading in the script. 

 Save the script. 

 Run the script. 

 Desired result will be displayed on the command window. 
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6 Coding:  

 (a) MATLAB Coding for checking Linearity Property of System: 

n=0:40; 

a=2; 

b=-3;  

A=5; 

B=6; 

x1=cos(2*pi*.1*n); 

x2=cos(2*pi*.5*n); 

y=A.*(a.*x1+b.*x2)+B; 

subplot(3,1,1); 

stem(n,y); 

yt=A.*(a.*x1+b.*x2)+a.*B+b.*B; 

subplot(3,1,2); 

stem(n,yt); 

d=y-yt; 

subplot(3,1,3); 

stem(n,d); 

axis([0 40 -10 20]); 

 

(b) MATLAB Coding for checking causality Property of System: Write a MATLAB 

program to find whether the given system is causal or not : y(n) = x(n)– 0.9y(n-1) 

 

n= -10:1:10 

b = [1 0]; 

a = [1 0.9] 

x = [zeros(1,10) 1 zeros(1,10)] 

y1 = filter (a, b, x) 

subplot (2, 1, 1) 

stem (n,y1) 

xlabel (' Samples ') 

ylabel (' Amplitude ') 

 

(c) MATLAB Coding for checking stability Property of System: Write a MATLAB 

program to find whether the given system is stable or not : y(n) = x(n)– 0.9y(n-1) 

T = abs (y1); 

t = sum (T); 

if (t < 1000) 

    disp (' Stable ') 

else 

    disp (' Unstable ') 

end 
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7 Result: 

(a) Linearity Property of System: 

 

Fig 6.2 Linearity Property of System 

 

 

(b) Causality Property of System: 

 

Fig 6.3Causality Property of System 

(c) Stability Property of System: 

  Stable 
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8 Assignment: 

1. Check whether  y(t) = tx(t) and y(n) = {x(t)}^2  are linear or non linear. 

2. For y(t) = 3x(t+1) + 5 check following properties of the system: 

(a) linearity (b) time invariant (c) causality 

(d) memoryless (e) stability  

3. Write a MATLAB program to find whether the given systemis linear, stable and 

causal 

y(n) = exp x(n) 

9 Conclusion: 

In this experiment, the motive was to introduce various properties of system like linearity, 

shift invariance, stability, causality and visualizing signal addition, signal subtraction, signal 

multiplication. 
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1. Objective:  

Study of impulse response of linear system. 

2. Expected outcomes of Experiment: 

1. Understanding impulse response of a linear system. 

2. Implementing and visualizing response of linear system to a impulse input.  

3. Theory: 

3.1 Impulse Function: 

It is equal to zero everywhere except for zero and whose integral over the entire 

real line is equal to one. It was introduced by Paul Dirac. Also known as Dirac delta 

function. 

δ t = 0    for    t ≠ 0 

 δ t 
∞

−∞

 dt = 1 

Properties of impulse function: 

A. Integral of impulse function: 

 δ t dt

b

a

=  
1 , a < 0 < 𝑏
0 , otherwise

  

If the integral includes the origin (where the impulse lies), the integral is one.  If 

it doesn't include the origin, the integral is zero. 

B. Sifting/Sampling of impulse function: 

 δ t − T f t dt =

b

a

 
f T  , a < 𝑇 < 𝑏
0,                otherwise

  

This is called the "sifting" property because the impulse function δ(t-T) sifts 

through the function f(t) and pulls out the value f(T). 

C. Convolution of impulse function: 

f t δ t − T = f t − T  

Convolution of a function with a shifted impulse yields a shifted version of that 

function. 

3.2 Impulse response: 
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Impulse response of a dynamic system is its output when given brief input signal 

i.e. Impulse.  

If H(s) be the transfer function of any system then inverse Laplace Transform of H(s) 

i.e. h(t) is Impulse response. 

h(t) = 𝑍−1 H(s)  

In MATLAB:impulse(sys) 

impulse calculates the unit impulse response of a dynamic system model. For 

continuous-time dynamic systems, the impulse response is the response to a Dirac 

input δ(t). For discrete-time systems, the impulse response is the response to a unit area 

pulse of length Ts and height 1/Ts, where Ts is the sample time of the system. (This 

pulse approaches δ(t) as Ts approaches zero.) For state-space models, impulse assumes 

initial state values are zero. 

3.3 Linear System: 

A system which obeys the Superposition principle; output is proportional to the 

input. Such systems comprise of linear devices and govern by linear differential 

equations. 

Superposition principle consists of homogeneity and additive. 

Homogeneity: 

F ax = aF(x) 

Where, 𝐚is a scalar.  

Additivity: 

F x1 + x2 = F x1 + F(x2) 

Example- Electrical circuits composed of resistor, inductor & capacitor. 

 

 

 

file:///C:\Program%20Files\MATLAB\R2016a\help\ident\ug\dynamic-system-models.html
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4. Equipment Required: 

 A pc installed with MATLAB software. 

5. Procedure: 

 Open MATLAB. 

 Go to Simulink. 

 Set parameter of pulse generator. 

 Insert values into state space matrices. 

 Run.  

 

6. Program:  

(A) 

A=[-0.5572 -0.7814;0.7814  0] 

B=[1 0]
’ 

C=[1.9691  6.4493] 

D=[0] 

sys=ss(A,B,C,D) 

impulse(sys) 

 

Impulse response is shown in fig. 7.1 

 

(B) 

A=[-3   2; 5   1] 

B=[0 1]
’ 

C=[13] 

D=[0] 

sys=ss(A,B,C,D) 

impulse(sys) 

 

Impulse response is shown in fig. 7.2 
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7. Results: 

 
Fig. 7.1 Impulse response 

From the fig. 7.1; system is stable. 

 

 
Fig. 7.2 Impulse response 

 

From the impulse response in fig. 7.2; the given system is unstable. 
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8. Assignment: 

1. Find impulse response of the system Y(t)=𝐞−𝐭𝐬𝐢𝐧𝟓𝐭, comment on its 

stability.Also, find the Peak amplitude and settling time. 

2. Find impulse response of the system Y(t)=𝐞𝟐𝐭𝐜𝐨𝐬𝟒𝐭, comment on the 

stability.Also, find the Peak amplitude and settling time. 

 

9. Conclusion: 

In this experiment, impulse response was introduced for a linear system. It helped in 

examining the stability of any system. Impulse response is meant to evaluate the 

response of the system for all frequency elements with the same magnitude. The only 

signal which contains all single-frequency elements with unit magnitude is Impulse (if 

you take the Laplace transform of impulse, it is 1 which means all frequencies have 

same contribution). So, by having the impulse response of a system, we have the 

overall behavior of that system.  

At the end, student should try to learn as much as they can from this experiment and 

should try to find out impulse response of different system. 
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1) Objective: 

Analysis of MIMO SYSTEM (2-ports) 

2) Expected Outcomes of Experiment: 

1. Studying and understanding various types of systems such as SISO, SIMO, MISO, 

MIMO. 

2. Analyzing a MIMO system using MATLAB. 

3) Theory:  

The communication links can be classified depending on the number of antennas used to 

transmit and to receive signal. The different schemes may be available in different scenarios, 

depending on the application they are used for. 

3.1 Single Input Single Output (SISO) 

SISO refers to the familiar wireless configuration with a single antenna both at the transmitter 

and receiver. It is less complex and easier to make. Assume we have an antenna, which transmits 

a signal S at a frequency f [1]. 

 

 

 

 

 

 

Fig 8.1: Single Input Single Output (SISO) 

As the signal propagates through an environment, the signal is faded, which is modeled as a 

multiplicative coefficient h. The received signal y will be hs. Single Input Single Output (SISO) 

is illustrated in fig. 1. 

The Channel capacity is poor as compare to other Technique but System design is not Complex. 

Theoretically, the 1Gbps barrier can be achieved using this configuration if we are allowed to 

use much power and as much BW as possible. Thus channel capacity and system performance is 

fully dependent on system design and more number of antennae. System Model of SIMO, MISO 

and MIMO is given below. 
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3.2 Single Input Multi Output (SIMO) 

SIMO refers to single antenna at the transmitter and Multiple at receiver side. Single Input Multi 

Output (SIMO) system is shown in fig. 8.2. 

For two receiving antennas, there will be two received signals y1 and y2 with different fading 

coefficients h1 and h2. The effect upon the signal s for a given path (from a transmit antenna to a 

receive antenna) is called a channel. 

 

 

 

 

 

 

Fig 8.2: Single Input Multi Output (SIMO) 

The channel capacity has not increased. The multiple receive antennas can help us get a stronger 

signal through diversity. 

3.3 Multi Input Single Outputs (MISO) 

SIMO refers to multiple antennas at the transmitter and a single antenna at receiver side, as in 

fig. 8.3. Assume 2 transmitting antennas and 1 receive antenna. There will be one received 

signal. In order to separate s1 and s2 we will need to also transmit, at a different time. 

 

  

   

 

 

Fig 8.3: Multi Input Single Outputs (MISO) 

The channel capacity has not really increased because we still have to transmit two signals at 

time 2. 
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3.4 Multi-Input Multi-Output (MIMO)  

Multi-Input Multi-Output (MIMO) is the combination of both Single Input Multi Output (SIMO) 

and Multi Input Single Output (MISO) system. Multiple antennas can be used at the transmitter 

and receiver, an arrangement called a multiple-input multiple-output (MIMO) system. The 

proper operation of MIMO systems requires careful design, with the encoded signals received 

from each transmitting antenna and the decoded signal at the receiver side. The better 

combination of number of transmitting and receiving antenna for MIMO systems in BPSK 

modulation technique that satisfy the good signal-to-noise ratio (SNR). Bit error rate (BER) is 

inversely proportional to the SNR values of the system. The main arguments today, for using 

multiple antennas when transmitting over a wireless link are: Array gain, Interference 

suppression, Transmitter localization, Bit rate and Data rate, spatial diversity, Reliability, 

Complexity. 

3.4.1 MIMO Antenna Configuration 

MIMO antenna configuration describes that use of multiple transmit and multiple receive 

antennas for a single user produces higher spectral efficiency and more data rates, as shown in 

fig. 5. Spatial multiplexing technique, different data streams are transmitted from the different 

antenna elements, Interference can be reduced easily in the wireless system. 
 

 

 

  

 

 

 

Fig 8.4: MIMO Antenna Configuration 

Here we take MT transmit and MR receive antennas with input data stream is S and output data 

stream is Y. 

3.4.2 MIMO System Model 

MIMO systems include considerations around signal preconditioning, as well as channel 

predictions, as illustrated in fig 8.5. 
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Fig 8.5: MIMO antennas system model 

The MIMO channel can be represented using a MR× MT matrix format H is given by, 

 

 

 

  

  

Where hij is a complex Gaussian random variable that models fading gain between the ith 

transmit and jth receive antenna. 

3.4.3 Frequency Response Properties of MIMO Systems: 

Consider again the block diagram of a  MIMO feedback system, where the plant has p inputs and 

q outputs. 

 

Fig 8.6: Block Diagram of a MIMO feedback system 

Note  that P(s) is a  q× p matrix  and C(s) is a p × q matrix. 
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Recall that the two sets of transfer functions needed to describe the behavior of a MIMO 

feedback system are given by: 

Input and Output Open Loop Transfer functions: 

LI (s) = C (s) P (s)  , LO (s) = P (s) C (s) 

Input and Output Sensitivity Functions: 

SI (s) = (I + LI (s))
-1

 , SO (s) = (I + LO (s))
-1 

Input and Output Complementary Sensitivity Functions: 

TI (s) = LI (s) (I + LI (s))
-1

  ,TO (s) = LO (s) (I + LO (s))
-1

 

Note that 

SO (s) + TO (s) = Iq×q , SI (s) + TI (s) = Ip×p 

4) Equipment Required: 

A PC installed with MATLAB software 

5) Procedure: 

 Open Matlab in your PC. 

 Open a new script. 

 Write the code as mentioned in the next heading in the script. 

 Save the script. 

 Run the script. 

 Desired result will be displayed on the command window. 

6) Coding: 

a) Calculate power gains for a sample 2-port network: 

s11 = 0.61*exp(i*165/180*pi); 

s21 = 3.72*exp(i*59/180*pi); 

s12 = 0.05*exp(i*42/180*pi); 

s22 = 0.45*exp(i*(-48/180)*pi); 

sparam = [s11 s12; s21 s22]; 

z0 = 50; 
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zs = 10 + i*20; 

zl = 30 - i*4; 

Gt = powergain(sparam,z0,zs,zl,'Gt') % Calculate the transducer power gain of the network 

Ga = powergain(sparam,z0,zs,'Ga') % Calculate the available power gain of the network 

Gp = powergain(sparam,z0,zl,'Gp') % Calculate the operating power gain of the network 

Gmag = powergain(sparam,'Gmag') % Calculate the maximum available power gain of the 

network 

Gmsg = powergain(sparam,'Gmsg') % Calculate the maximum stable power gain of the network 

 

7) Results: 

Calculate power gains for a sample 2-port network given: 

Transducer power gain of the network: Gt = 7.4654 

Available power gain of the network: Ga = 11.4361 

Operating power gain of the network: Gp = 16.2358 

Maximum available power gain of the network: Gmag = 41.5032 

Maximum stable power gain of the network Gmsg = 74.4000 

 

8) Conclusion: 

In this experiment, various types of systems like SISO, SIMO, MISO, MIMO are studied using 

single to multiple antennas. The capacity of a MIMO system (MT, MR) = (3, 3) is approximately 

three times the capacity of a (1, 1) SISO system. The SISO system will give 1 to 7 bps/Hz and 

MIMO will give 3 to 48 bps/Hz data.  
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1. Objective: 

Study of Realization Theorem and Filters 

2. Expected Outcomes of Experiment: 

1. Studying and understanding different types of filters. 

2. Computing and visualizing behavior of frequency response of filters 

3. Theory: 

3.1 Introduction: 

Filters are a basic component of all signal processing and telecommunication system. A 

filtering a device or process that removes some unwanted components or features from a 

signal. Filtering is a class of signal processing used to complete or partial suppression of 

some aspects of the signal. Most often, this means to remove some frequencies and not 

others in order to suppress the interfacing signals and reduce the background noise. 

3.2 Types of Filter: 

In signal processing, the filters can be of four types, i.e. Lowpass Filters, Highpass 

Filter,Bandpass Filters, and Bandstop Filters. 

 

Fig 9.1 Characteristics of filter 
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3.2.1 Low pass Filter: 

To see how complex impedances are used in practice consider the simple case of a 

voltage divider. 

                    

If Z1 is a resistor and Z2 is a capacitor then 

 

Generally we will be interested only in the magnitude of the response: 

 

Recall that the magnitude of a complex number is the square root of the sum of the 

squares of the real and imaginary parts. There are also phase shifts associated with the 

transfer function (or gain, Vo/Vi), thought we will generally ignore these. 

This is obviously a low pass filter (i.e., low frequency signals are passed and high 

frequency signals are blocked).If ω<<1/RC then ωCR<<1 and the magnitude of the gain is 

approximately unity, and the output equals the input. If ω>>1/RC (ωCR>>1) then the gain 

goes to zero, as does the output. At ω=1/RC, called the break frequency (or cut-off 

frequency, or 3dB frequency, or half-power frequency, or bandwidth), the magnitude of the 

gain is 1/sqrt(2)0.71. In this case (and all first order RC circuits) high frequency is defined 

as ω>>1/RC; the capacitor acts as a short circuit and all the voltage is across the resistance. 

At low frequencies, ω<<1/RC, the capacitor acts as an open circuit and there is no current 

(so the voltage across the resistor is near zero). 
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If Z1 is an inductor and Z2 is a resistor another low pass structure results with a break 

frequency of R/L 

3.2.2 High-Pass Circuit 

If Z1 is a capacitor and Z2 is a resistor we can repeat the calculation: 

 

and 

 

At high frequencies, ω>>1/RC, the capacitor acts as a short and the gain is 1 (the signal 

is passed). At low frequencies, ω<<1/RC, the capacitor is an open and the output is zero 

(the signal is blocked). This is obviously a high pass structure and you can show that the 

break frequency is again 1/RC. 

If Z1 is a resistor and Z2 is an inductor the resulting circuit is high pass with a break 

frequency of R/L. 

3.2.3 Band pass Filters: 

For a second-order band-pass filter the transfer function is given by 

 

where ωo is the centre frequency, β is the bandwidth and Ho is the maximum 

amplitude of the filter. These quantities are shown on the diagram below. The 

quantities in parentheses are in radian frequencies, the other quantities are in Hertz 

(i.e. fo=ωo/2π, B=β/2π).  

4. Equipment Required: 

A PC installed with MATLAB software 

5. Procedure: 

 Open MATLAB in your PC. 

 Open a new script. 

 Write the code as mentioned in the next heading in the script. 

 Save the script. 
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 Run the script. 

 Desired results will be displayed on the command window. 

6 CODING: 

6.1To create a simple Low Pass Filter in the mfile, with a Cut-off frequency of 3Hz and 

sampling frequency of 100Hz. 

% Low pass Filter 

d = fdesign.lowpass('Fp,Fst,Ap,Ast',3,5,0.5,40,100); 

Hd = design(d,'equiripple'); 

fvtool(Hd) 

6.2To create a simple High Pass Filter in the mfile, with a Cut-off frequency of 0.5 Hz and 

sampling frequency of 48 Hz. 

% High pass Filter 

d=fdesign.highpass(10,12,80,0.5,48); 

Hd = design(d,'equiripple'); 

fvtool(Hd) 

6.3 To create a simple Band Pass Filter in the mfile, with a Cut-off frequency of 0.5 Hz and 

sampling frequency of 48 Hz. 

% Band pass Filter 

d = fdesign.bandpass(10, 12, 14, 16, 80, .5, 60, 48) 

Hd = design(d,'equiripple'); 

fvtool(Hd) 
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7. Results 

7.1 Low pass Filter 

 

Fig 9.2 Low pass Filter 

7.2 High Pass filter 

 

Fig 9.3 High Pass filter 
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7.3 Band Pass filter 

 

Fig 9.4 Band Pass filter 

8. Assignment 

1 Create a simple Low Pass Filter using MATLAB which has a Cut-off frequency of  

5 Hz and sampling frequency of 10Hz. 

2 Create a simple High Pass Filter using MATLAB which has a Cut-off frequency of 1 Hz 

and sampling frequency of 50 Hz. 

9. Conclusion: 

In this experiment, the motive was to introduce filters viz. high pass, low pass and their behavior 

(frequency response) is studied.   
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1. Objective: 

Simulation of systems using Op-amps/Software tools 

2. Expected Outcomes of Experiment: 

1 Studying and understanding working of an OP-AMP. 

2 Simulating the behavior of different types of OP-AMP. 

3. Theory: 

Introduction  

Their applications were initially in the area of analog computation and instrumentation. Op 

amp is very popular because of its versatility.Op-amp circuits work at levels that are quite 

close to their predicted theoretical performance. The op-amp is treated a building block to 

study its terminal characteristics and its applications. 

Ideal operational amplifier:  

• Infinite input impedance.  

• Infinite open loop gain AOL for differential signal.  

• Zero gain for the common - mode signal.  

• Zero output impedance.  

• Infinite bandwidth. 

• Infinite bandwidth. 
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Common Op-Amp Circuits 

3.1 Inverting Op-Amp 

 

 

3.2 Noninverting Op-Amp 

 

3.3 Differential Input Op-Amp 
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4. Equipment’s Required: 

A PC installed with MATLAB software. 

5. Procedure: 

5.1 Open MATLAB in your PC.  

5.2 Open a new script.  

5.3 Write the code as mentioned in the next heading in the script.  

5.4 Save the script.  

5.5 Run the script.  

5.6 Desired result will be displayed on the command window. 

6. CODING: 

6.1 The MATLAB program that can be used to find the poles, zero and plot the frequency 

response is as follows:  

 

Figure 10.1 Inverter with Finite Open-loop Gain 

% Poles and zeros, frequency response of above fig. 

c1 = 1e-7; c2 = 1e-3; r1 = 10e3; r2 = 10; 
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% poles and zeros b1 = c2*r2;  

a1 = c1*r1; 

 num = [b1 1]; 

 den = [a1 1];  

disp('the zero is') z = roots(num) 

disp('the poles are') p = roots(den)  

% the frequency response 

 w = logspace(-2,6); 

 h = freqs(num,den,w);  

gain = 20*log10(abs(h)); 

 f = w/(2*pi); 

 phase = angle(h)*180/pi;  

subplot(211),semilogx(f,gain,'w'); 

 xlabel('Frequency, Hz') 

 ylabel('Gain, dB') 

 axis([1.0e-2,1.0e6,0,22]) 

 text(2.0e-2,15,'Magnitude Response')  

subplot(212), 

semilogx(f,phase,'w') 

 xlabel('Frequency, Hz') 

 ylabel('Phase')  

axis([1.0e-2,1.0e6,0,75]) 

 text(2.0e-2,60,'Phase Response') 

The magnitude and phase plots are shown in Figure 3 



6 
 

6.2 In Figure 2, R1 = 500 Ω, and R2 = 50 KΩ. Plot the closed-loop gain as the open-loop 

gain increases from 10
2
 to 10

8
 . 

 

Figure 10.2 Inverter with Finite Open-loop Gain 

 

% Effect of finite open-loop gain % 

 a = logspace(2,8); 

 r1 = 500; r2 = 50e3; 

 r21 = r2/r1; g = []; 

 n = length(a); 

 for  

i = 1:n  

g(i) = r21/(1+(1+r21)/a(i)); 

 end  

semilogx(a,g,'w') 

 xlabel('Open loop gain')  

ylabel('Closed loop gain')  
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title('Effect of Finite Open Loop Gain') 

 axis([1.0e2,1.0e8,40,110]) 

The characteristics of the closed-loop gain as a function of the open-loop gain is shown in fig.4 

7  Results: 

7.1 z = -100 ; 

 p = -1000 

 

Figure 10.3 Frequency Response 
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Figure 10.4 Closed-Loop Gain versus Open-Loop Gain 

8. Assignments: 

1 Design a non-inverting amplifier with an appropriate closed-loop gain of 150 and a 

minimum input impedance of 100MΩ. 

2 Design an inverting amplifier using a 741 op-amp. The voltage gain must be 68 +5% and 

the input impedance must be approximately 10KΩ. 

9. Conclusion: 

In this experiment, the motive was to introduce OP-AMP and their behaviour (frequency 

response).   

s communication with MIMO systems will give better results by using of antennae arrays, 

equalizer, diversity technique and OFDM technique on both sides of the communication link. 
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