Model Curriculum **QP Name: Mechatronics Maintenance Specialist** QP Code: ELE/Q7105 QP Version: 1.0 **NSQF Level: 5** **Model Curriculum Version: 1.0** Electronic Sector Skills Council of India (ESSC!) ESC House, 2nd Floor IS, Okhla Industrial Area- Phase 1II New Delhi-II0020 ## **Table of Contents** | Training Parameters | 3 | |---|----| | Program Overview | 5 | | Training Outcomes | 5 | | Compulsory Modules | 5 | | Module 1: Introduction and orientation to the role of a Mechatronics Maintenance Specialist | 7 | | Module 2: Process of setting up circuits and electrical components in the mechatronics system | 8 | | Module 3: Process of installing, testing and using the sensors and actuators in the mechatronics system | 10 | | Module 4: Process of installing, testing and using microcontroller in the mechatronics system | 12 | | Module 5: Soft Skills and Work Ethics | 14 | | Module 6: Basic Health and Safety Practice | 16 | | Module 7: On-the-Job Training | 18 | | Annexure | 19 | | Trainer Requirements | 19 | | Assessor Requirements | 20 | | Assessment Strategy | 21 | | References | 23 | | Glossary | 23 | | Acronyms and Abbreviations | 24 | # **Training Parameters** | Sector | Electronics | |--|--| | Sub-Sector | Industrial Automation | | Occupation | Engineering – I&A | | Country | India | | NSQF Level | 5 | | Aligned to NCO/ISCO/ISIC Code | NCO-2015/NA | | Minimum Educational Qualification and Experience | 3 Years Diploma after 10th (Electrical or Electronics or Mechanical Engineering) with 3 Years of Relevant experience OR 3 Years Diploma after 12th (Electrical or Electronics or Mechanical Engineering) with 1 Year of Relevant experience OR B.E./ B. Tech (Degree in Electrical or Electronics or Mechanical Engineering) OR Certificate of NSQF Level-4 in Site Engineer Control Panel with 2 years of relevant Experience | | Pre-Requisite License or Training | NA | | Minimum Job Entry Age | 21 Years | | Last Reviewed On | 24/02/2022 | | Next Review Date | 02/06/2025 | | NSQC Approval Date | 24/02/2022 | | QP Version | 1.0 | | Model Curriculum Creation Date | 24/02/2022 | | Model Curriculum Valid Up to Date | 02/06/2025 | | Model Curriculum Version | 1.0 | | Minimum Duration of the Course | 720 Hours | | Maximum Duration of the Course | |--------------------------------| | Maximum Duration of the Course | ## **Program Overview** This section summarizes the end objectives of the program along with its duration. #### **Training Outcomes** At the end of the program, the learner should have acquired the listed knowledge and skills: - Demonstrate the process of setting up circuits and electrical components in the mechatronics system. - Demonstrate the process of installing, testing and using the sensors and actuators in the mechatronics system. - Demonstrate the process of installing, testing and using microcontrollers in the mechatronics system. - Explain the importance of following inclusive practices for all genders and PwD at work. - Demonstrate the use of relevant health and safety equipment at work. #### **Compulsory Modules** The table lists the modules and their duration corresponding to the Compulsory NOS of the QP. | NOS and Module Details | Theory
Duration | Practical
Duration | On-the-Job
Training Duration
(Recommended) | On-the-Job Training
Duration
(Mandatory) | Total
Duration | |---|--------------------|-----------------------|--|--|-------------------| | Bridge Module | 04:00 | 00:00 | 00:00 | 00:00 | 04:00 | | Module 1: Introduction and orientation to the role of a Mechatronics Maintenance Specialist | 04:00 | 00:00 | 00:00 | 00:00 | 04:00 | | ELE/N7109 Set up circuits
and electrical components
in the mechatronics system
NOS Version- 1.0
NSQF Level- 5 | 60:00 | 84:00 | 00:00 | 66:00 | 210:00 | | Module 2: Process of setting up circuits and electrical components in the mechatronics system | 60:00 | 84:00 | 00:00 66:00 | | 210:00 | | ELE/N7110 Install, test and use the sensors and actuators in the mechatronics system NOS Version- 1.0 NSQF Level- 5 | 60:00 | 84:00 | 00:00 66:00 | | 210:00 | | Module 3: Process of installing, testing and using the sensors and actuators in the mechatronics system | 60:00 | 84:00 | 00:00 66:00 | | 210:00 | | ELE/N7111 Install, test and use microcontroller in the mechatronics system NOS Version- 1.0 NSQF Level- 5 | 64:00 | 84:00 | 00:00 | 68:00 | 216:00 | |---|--------|--------|-------|--------|--------| | Module 4: Process of installing, testing and using microcontroller in the mechatronics system | 64:00 | 84:00 | 00:00 | 68:00 | 216:00 | | ELE/N9905 Work effectively
at the workplace
NOS Version- 2.0
NSQF Level- 4 | 16:00 | 24:00 | 00:00 | 00:00 | 40:00 | | Module 5: Soft Skills and Work Ethics | 16:00 | 24:00 | 00:00 | 00:00 | 40:00 | | ELE/N1002 Apply health
and safety practices at
workplace
NOS Version- 3.0
NSQF Level- 4 | 16:00 | 24:00 | 00:00 | 00:00 | 40:00 | | Module 6: Basic Health and Safety Practice | 16:00 | 24:00 | 00:00 | 00:00 | 40:00 | | Total Duration | 220:00 | 300:00 | 00:00 | 200:00 | 720:00 | ## **Module Details** # Module 1: Introduction and orientation to the role of a Mechatronics Maintenance Specialist #### **Terminal Outcomes:** • Describe the job role of a Mechatronics Maintenance Specialist. | Duration: 04:00 | Duration: 00:00 | | | | |---|-----------------------------------|--|--|--| | Theory – Key Learning Outcomes | Practical – Key Learning Outcomes | | | | | Describe the size and scope of the
Electronics industry and its sub-
sectors | • NA | | | | | Discuss the role and responsibilities
of a Mechatronics Maintenance
Specialist. | | | | | | Discuss various employment
opportunities for a Mechatronics
Maintenance Specialist in the
Electronics industry. | | | | | | State the organisational policies on
incentives, personnel management
reporting structure, etc. | | | | | | Classroom Aids | | | | | | Training Kit - Trainer Guide, Presentations, Whiteboard, Marker, Projector, Laptop | | | | | | Tools, Equipment and Other Requirements | | | | | | NA | | | | | # Module 2: Process of setting up circuits and electrical components in the mechatronics system Mapped to ELE/N7109 v1.0 #### **Terminal Outcomes:** - Demonstrate the process of Setting up microcontrollers. - Demonstrate the process of Setting up circuits, electrical components and pneumatic systems. | Duration: 24:00 | Duration: 48:00 | |--|---| | Theory – Key Learning Outcomes | Practical – Key Learning Outcomes | | Explain the need and scope of the mechatronics system. Explain the mechatronics system and its scope in the automation sector. Explain the traditional vs. mechatronics approach. | Demonstrate the process of testing the mechatronics components to ensure they are functioning correctly. Demonstrate the process of installing the mechatronics control system and the hardware interfacing units of microcontrollers. | | Explain how to interpret the block
diagram representation of a general
mechatronics system showing various
components with suitable examples. Explain relevant control systems such | Demonstrate the process of testing
the microcontrollers for the correct
functioning and carrying out
troubleshooting for the issues
identified. | | as open and closed-loop systems, basic elements of the closed-loop system. | Demonstrate how to test the
electrical components and circuits
for correct functioning and | | Explain the basic circuit concepts. | compatibility with the mechatronics | | Explain the semiconductor circuit elements. Explain different types of circuits used in mechatronic devices. | system. Demonstrate the process of performing sequence control and using the logic functions for operating the pneumatic system. | | Explain how to interpret the
pneumatic symbols in pneumatic
systems. | Demonstrate how to use relays in the pneumatic system. | | Describe the function and operation of pneumatic valves. | Demonstrate how to monitor the
pneumatic fluid by analysing the
speed and pressure control sensors. | | Describe the logic functions used in
the pneumatic system. | Demonstrate the process of carrying
out troubleshooting for any issues | | Describe the function of relays and
their working in the pneumatic
system. | encountered with the pneumatic system. | | Explain the need for the proximity | Demonstrate how to design the
cascade circuits. | | sensor and its application in a pneumatic cylinder. | Demonstrate the process of installing
the pneumatic power system. | | Explain the design of cascade circuits. | Demonstrate the process of carrying | - Describe the process of programming PLCs in the Ladder diagram. - Explain the principles of operation, characteristics and applications of power semiconductor devices. - Explain the characteristics of power semiconductor devices and circuits. - Explain the concept of fluid power. - Explain the relevant case studies for implementing the pneumatic system in the automatic production line. out maintenance of the circuits, electrical components and pneumatic system. #### **Classroom Aids** Training Kit (Trainer Guide, Presentations). Whiteboard, Marker, Projector, Laptop #### **Tools, Equipment and Other Requirements** Align, Fit and Assemble Component Parts Using Hand Tools, Power Tools, Fixtures, Templates and Microscopes # Module 3: Process of installing, testing and using the sensors and actuators in the mechatronics system Mapped to ELE/N7110 v1.0 #### **Terminal Outcomes:** • Demonstrate the process of installing, testing and using the sensors and actuators. | Duration: 48:00 | Duration: 124:00 | | | |--|--|--|--| | Theory – Key Learning Outcomes | Practical – Key Learning Outcomes | | | | Explain the use of contact and non-contact type sensors. Explain the functions and application of Potentiometer Sensors, Strain Gauge Elements, Capacitive | Demonstrate the process of installing
the selected sensors such as the
potentiometer sensor following the
standard procedure. Demonstrate how to test the sensors | | | | Elements, Eddy Current, Pressure Sensors, Pneumatic, Pyro Electrical, Piezoelectric Sensors etc. | for correct functioning after installation. • Demonstrate how to check the | | | | Explain the criteria for selecting
sensors for use. | working of the strain gauge sensor and measure the torque applied by the motor. | | | | Explain the classification, need and
scope of different types of actuators. | Demonstrate the use of an eddy current sensor. | | | | Describe the process of pneumatic
actuation, hydraulic actuation and
double-acting. | Demonstrate how to use the capacitive element by replacing the | | | | Explain the use of different types of motors such as vane motors. Explain the components of electrical actuation systems such as switching devices, keypads, electromechanical and solid-state relays, stepper motors | mechanical buttons.Demonstrate how to use the | | | | | inductive sensor to measure high precision measurements of displacement, distance, oscillation in harsh industrial environments. | | | | Explain the criteria for the selection
of different types of actuators. | Demonstrate the use of the
pneumatic and pyro-electric and
piezoelectric sensors. | | | | Explain how to carry out repair and
maintenance of sensors and
actuators in a mechatronics system. | Demonstrate the process of carrying
out repair and maintenance of
sensors. | | | | | Demonstrate the process of installing
an actuator with the appropriate
properties according to the need | | | | | Demonstrate how to use the
appropriate interface circuitry to
match the actuator to the system
driving it. | | | | | Demonstrate how to test the
actuator for correct functioning after | | | installation. - Demonstrate the process of carrying out troubleshooting for any issues identified with the installed hydraulic and pneumatic actuator as per the sketches and block diagrams. - Demonstrate the process of install and using the vane motor as per the standard procedure. - Demonstrate how to control a highpowered circuit using a lower power signal through electro-mechanical and solid-state relays. - Demonstrate how to use the stepper motor to convert electrical power into mechanical power. - Demonstrate how to create analytical design and development solutions for actuators for different applications. - Demonstrate the process of carrying out repair and maintenance of actuators. #### **Classroom Aids** Training Kit (Trainer Guide, Presentations). Whiteboard, Marker, Projector, Laptop #### **Tools, Equipment and Other Requirements** Electromechanical Assemblies, Test Instruments Such as Oscilloscopes, Electronic Voltmeters and Bridges. # Module 4: Process of installing, testing and using microcontroller in the mechatronics system Mapped to ELE/N7111 v1.0 #### **Terminal Outcomes:** • Demonstrate the process of installing, testing and using the microcontroller. | Duration: 48:00 | Duration: 124:00 | |---|--| | Theory – Key Learning Outcomes | Practical – Key Learning Outcomes | | Explain different applications of mechatronic systems. Explain the structure of different types of microcontrollers and their PIN configuration. Explain the difference between a microprocessor and a microcontroller. Explain the advantages, disadvantages and applications of microcontrollers. Explain the interfacing of D/A converters and A/D converters with microcontrollers. Explain the application of temperature control stepper motor control. Describe the function of microcontroller structure in hardware interfacing units of the mechatronics system. State the instruction sets and programming concepts of microprocessor and microcontroller. State the programming concepts to interface the hardware units with microprocessor and microcontroller. Explain the architecture of PIN configuration, ARM Processor. Explain the criteria for selecting an appropriate microcontroller. Describe the process of digital to analogue and vice versa conversion in a microcontroller. | Demonstrate the process of installing the microcontroller as per the standard procedure and linking the function of the microcontroller structure in hardware interfacing units of the mechatronics system. Demonstrate how to test the microcontroller after installation to ensure it functions as expected. Demonstrate how to program the microcontroller to execute a specific set of instructions Demonstrate the process of testing the functioning of the machine using the mechatronics system. Demonstrate the process of carrying out interfacing of Analog-To-Digital (A/D) and Digital-To-Analog (D/A) converters using the appropriate type of microcontroller. Demonstrate how to compose and program stepper motor using the appropriate type of microcontroller. Demonstrate how to compose and program Advanced RISC Machine (ARM) and microprocessor with the stepper motor. Demonstrate the process of carrying out repair and maintenance of microcontrollers. | | Describe the process of controlling | | the temperature with a temperature sensor using a microcontroller circuit. - Describe the process of interfacing experiments of A/D and D/A using the appropriate type of microprocessor. - Describe the process of interfacing and programming of Stepper motor using the appropriate type of microcontroller. - Describe the process of interfacing and programming of the ARM processor with a Stepper Motor. - Demonstrate how to carry out repair and maintenance of microcontrollers in the mechatronics system. #### **Classroom Aids** Training Kit (Trainer Guide, Presentations). Whiteboard, Marker, Projector, Laptop #### **Tools, Equipment and Other Requirements** Common Hand and Power Tools, Such as Hammers, Hoists, Saws, Drills and Wrenches, to Precision Measuring Instruments and Electrical and Electronic Testing Device # Module 5: Soft Skills and Work Ethics *Mapped to ELE/N9905* #### **Terminal Outcomes:** - Work effectively at the workplace. - Implement the practices related to gender and PwD sensitization. | Duration: 16:00 | Duration: 24:00 | |---|--| | Theory – Key Learning Outcomes | Practical – Key Learning Outcomes | | State the importance of work ethics
and workplace etiquette | Develop a sample plan to achieve
organisational goals and targets. | | State the importance of effective
communication and interpersonal
skills. | Create a sample feedback form to
obtain feedback from customers,
colleagues etc. | | Explain ways to maintain discipline at
the workplace. | Roleplay to demonstrate the use of professional language and behaviour | | Discuss the common reasons for
interpersonal conflict and ways of | that is respectful of PwD and all genders. | | managing them effectively. | Apply organisational protocol on data
confidentiality and sharing only with | | Discuss the importance of following
organisational guidelines for dress
code, time schedules, language usage
and other behavioural aspects. | the authorised personnel. | | Explain the importance of working as
per the workflow of the organisation
to receive instructions and report
problems. | | | Explain the importance of conveying
information/instructions as per
defined protocols to the authorised
persons/team members. | | | Explain the common workplace
guidelines and legal requirements on
non-disclosure and confidentiality of
business-sensitive information. | | | Describe the process of reporting
grievances and unethical conduct
such as data breaches, sexual
harassment at the workplace, etc. | | | Explain the concept and importance
of gender sensitivity and equality. | | | Discuss ways to create sensitivity for
different genders and Persons with
Disabilities (PwD). | | ways of dealing with Discuss heightened emotions of self and others. #### **Classroom Aids** Training Kit (Trainer Guide, Presentations). Whiteboard, Marker, Projector, Laptop #### **Tools, Equipment and Other Requirements** Sample Of Escalation Matrix, Organization Structure. # Module 6: Basic Health and Safety Practice *Mapped to ELE/N1002* #### **Terminal Outcomes:** • Apply health and safety practices at the workplace. | Duration: 16:00 | Duration: 24:00 | | | | |---|---|--|--|--| | Theory – Key Learning Outcomes | Practical – Key Learning Outcomes | | | | | Discuss job-site hazards, risks and accidents. Explain the organizational safety procedures for maintaining electrical safety, handling tools and hazardous materials. Elaborate on electronic waste disposal procedures. Describe the process of disposal of hazardous waste List the name and location of concerned people, documents and equipment for maintaining health and safety in the workplace. Describe how to interpret warning signs while accessing sensitive work areas. Explain the importance of good housekeeping. Describe the importance of maintaining appropriate postures while lifting heavy objects. List the types of fire and fire extinguishers. Explain the importance of efficient utilisation of water, electricity and other resources. List the common sources of pollution and ways to minimize it. Describe the concept of waste management and methods of disposing hazardous waste. Explain various warning and safety signs. Describe different ways of preventing accidents at the workplace. | Demonstrate the use of protective equipment suitable as per tasks and work conditions. Prepare a report to inform the relevant authorities about any abnormal situation/behaviour of any equipment/system. Administer first aid in case of a minor accident. Demonstrate the steps to free a person from electrocution safely. Administer Cardiopulmonary Resuscitation (CPR). Demonstrate the application of defined emergency procedures such as raising alarm, safe/efficient, evacuation, moving injured people, etc. Prepare a sample incident report. Use a fire extinguisher in case of a fire incident. Demonstrate the correct method of lifting and handling heavy objects. | | | | #### **Classroom Aids** Training Kit (Trainer Guide, Presentations). Whiteboard, Marker, Projector, Laptop #### **Tools, Equipment and Other Requirements** Personal Protection Equipment: Safety Glasses, Head Protection, Rubber Gloves, Safety Footwear, Warning Signs and Tapes, Fire Extinguisher, First Aid Kit, Fire Extinguishers and Warning Signs. #### **Module 7: On-the-Job Training Mapped to Mechatronics Maintenance Specialist** **Mandatory Duration: 00:00 Recommended Duration: 200:00** **Location: On-Site** #### **Terminal Outcomes** - 1. Explain the basics of the mechatronics system and its scope in the automation sector. - 2. Explain the traditional vs. mechatronics approach. - 3. Explain different types of circuits used in mechatronic devices. - 4. Explain the logic functions used in the pneumatic system. - 5. Set up circuits, electrical components and pneumatic system. - 6. Carry out maintenance of the circuits, electrical components and pneumatic system. - 7. Install, test and use the sensors and actuators. - 8. Carry out repair and maintenance of sensors and actuators. - 9. Install, test and use the microcontroller. - 10. Carry out repair and maintenance of microcontrollers. - 11. Maintain a healthy, safe and secure working environment. ## **Annexure** ### **Trainer Requirements** | Trainer Prerequisites | | | | | | | |---|---|---------------------------------|---|-------------------|----------------|---------| | Minimum
Educational | Specialization | Relevant Industry
Experience | | Trainii
Experi | • | Remarks | | Qualification | | Years | Specialization | Years | Specialization | | | Diploma/
Degree in
Electrical or
Electronics | I.T.I/ Industrial
Automation/
Engineering | 3 | Mechatronics
Maintenance
Specialist | 2 | Electronics | | | Trainer Certification | | | | | |---|---|--|--|--| | Domain Certification | Platform Certification | | | | | "Mechatronics Maintenance Specialist", "ELE/Q7105, v1.0", Minimum accepted score is 80% | "Trainer", "MEP/Q2601" with the scoring of a minimum of 80% | | | | ### **Assessor Requirements** | Assessor Prerequisites | | | | | | | |---|---|---------------------------------|---|--------------------------------|----------------|---------| | Minimum
Educational | Specialization | Relevant Industry
Experience | | Training/Assessment Experience | | Remarks | | Qualification | | Years | Specialization | Years | Specialization | | | Diploma/
Degree in
Electrical or
Electronics | I.T.I/ Industrial
Automation/
Engineering | 5 | Mechatronics
Maintenance
Specialist | 2 | Electronics | | | Assessor Certification | | | | | |---|--|--|--|--| | Domain Certification | Platform Certification | | | | | "Mechatronics Maintenance Specialist", "ELE/Q7105, v1.0", Minimum accepted score is 80% | "Assessor", "MEP/Q2701" with the scoring of a minimum of 80% | | | | #### **Assessment Strategy** - 1. Assessment System Overview: - Batches assigned to the assessment agencies for conducting the assessment on SDMS/SIP or email - Assessment agencies send the assessment confirmation to VTP/TC looping SSC - The assessment agency deploys the ToA certified Assessor for executing the assessment - SSC monitors the assessment process & records - 2. Testing Environment To ensure a conducive environment for conducting a test, the trainer will: - Confirm that the centre is available at the same address as mentioned on SDMS or SIP - Check the duration of the training. - Check the Assessment Start and End time to be 10 a.m. and 5 p.m. - Ensure there are 2 assessors if the batch size is more than 30. - Check that the allotted time to the candidates to complete Theory & Practical Assessment is correct. - Check the mode of assessment—Online (TAB/Computer) or Offline (OMR/PP). - Confirm the number of TABs on the ground are correct to execute the Assessment smoothly. - Check the availability of the Lab Equipment for the particular Job Role. - 3. Assessment Quality Assurance levels / Framework: - Question papers created by the Subject Matter Experts (SME) - Question papers created by the SME verified by the other subject Matter Experts - Questions are mapped with NOS and PC - Question papers are prepared considering that levels 1 to 3 are for the unskilled & semiskilled individuals, and levels 4 and above are for the skilled, supervisor & higher management - The assessor must be ToA certified & the trainer must be ToT Certified - The assessment agency must follow the assessment guidelines to conduct the assessment - 4. Types of evidence or evidence-gathering protocol: - Time-stamped & geotagged reporting of the assessor from assessment location - Centre photographs with signboards and scheme-specific branding - Biometric or manual attendance sheet (stamped by TP) of the trainees during the training period - Time-stamped & geotagged assessment (Theory + Viva + Practical) photographs & videos - 5. Method of verification or validation: To verify the details submitted by the training centre, the assessor will undertake: - A surprise visit to the assessment location - A random audit of the batch - A random audit of any candidate - 6. Method for assessment documentation, archiving, and access To protect the assessment papers and information, the assessor will ensure: • Hard copies of the documents are stored - Soft copies of the documents & photographs of the assessment are uploaded/ accessed from Cloud Storage - Soft copies of the documents & photographs of the assessment are stored in the Hard drive ## **References** #### **Glossary** | Term | Description | |-----------------------|--| | Declarative knowledge | Declarative knowledge refers to facts, concepts and principles that need to be known and/or understood to accomplish a task or to solve a problem. | | Key Learning | The key learning outcome is the statement of what a learner needs to know, understand and be able to do to achieve the terminal outcomes. A set of key learning outcomes will make up the training outcomes. Training outcome is specified in terms of knowledge, understanding (theory) and skills (practical application). | | OJT (M) | On-the-job training (Mandatory); trainees are mandated to complete specified hours of training on the site | | OJT (R) | On-the-job training (Recommended); trainees are recommended the specified hours of training on the site | | Procedural Knowledge | Procedural knowledge addresses how to do something, or how to perform a | | Training Outcome | Training outcome is a statement of what a learner will know, understand and be able to do upon the completion of the training . | | Terminal Outcome | The terminal outcome is a statement of what a learner will know, understand and be able to do upon the completion of a module. A set of terminal outcomes help to achieve the training outcome. | ### **Acronyms and Abbreviations** | Term | Description | |------|---| | A/D | Analog-To-Digital | | ARM | Advanced RISC Machine | | CPR | Cardiopulmonary Resuscitation | | D/A | Digital-To-Analog | | NCO | National Occupational Standards | | NOS | National Skills Qualification Committee | | NSQF | National Skills Qualification Framework | | OJT | On-the-Job Training | | PC | Performance Criteria | | PwD | Persons with Disabilities | | QP | Qualification Pack | | SaaS | Software-as-a-Service | | SDMS | Skill Development & Management System | | SIP | Skill India Portal | | SME | Small and Medium Enterprises | | SOP | Standard Operating Procedure | | SSC | Sector Skill Council | | TC | Trainer Certificate | | ТоА | Training of Assessors | | ТоТ | Training of Trainers | | TP | Training Provider |